设A,B为n阶可逆矩阵,E为n阶单位矩阵,M*为M的伴随矩阵,则=【 】
A、
B、
C、
D、
设函数f(x)=(x2+a) ex,若f(x)没有极值点,但曲线y=f(x)有拐点,则a的取值范围是【 】
若函数f(a)=1/(x(lnx)a+1) dx在a=a0处取得最小值,则a0=【 】
已知{xn },{yn}满足x1=yn=1/2,xn+1=sinxn,yn+1=yn2 (n=1,2,⋯) ,则当n→∞时【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
设空间有界区域Ω中,柱面x²+y²=1与平面z=0和x+z=1围成,Σ为Ω边界的外侧,计算曲面积分I=∰Σ2xzdydz+xzcosydzdy+3yzsinxdxdy
设曲线y=y(x)(x>0)经过点(1,2),该曲线上任一点P(x,y)到y轴的距离等于该点处的切线在y轴上的截距.(Ⅰ)求y(x);(Ⅱ)求函数f(x)=y(t)dt在(0,+∞)上的最大值.
设A = aij为3阶矩阵,Aij为代数余子式,若A的每行元素之和均为2,且|A| = 3,A11 + A21 + A31 = ______.
已知A=(1) 求正交矩阵P,使得PTAP为对角矩阵;(2) 求正定矩阵C,使得C2 = (a+3)E-A.
若x=(-1,2,3,0,4),求‖x‖1,‖x‖2,‖x‖∞.
设A是n阶矩阵,A*为A的伴随矩阵,证明秩R(A*)与R(A)之间满足R(A* )=
设A=(aij)是n阶实对称正定矩阵,b1,b2,…,bn为任意非零实数,证明B=(aijbibj)也是正定的。
设A为任一n阶矩阵,数λ>0,证明λI+AT A为正定矩阵。