已知{xn },{yn}满足x1=yn=1/2,xn+1=sinxn,yn+1=yn2 (n=1,2,⋯) ,则当n→∞时【 】
A、xn是yn的高阶无穷小
B、yn是xn的高阶无穷小
C、xn与yn是等价无穷小
D、xn与yn是同阶但不等价的无穷小
已知{xn },{yn}满足x1=yn=1/2,xn+1=sinxn,yn+1=yn2 (n=1,2,⋯) ,则当n→∞时【 】
A、xn是yn的高阶无穷小
B、yn是xn的高阶无穷小
C、xn与yn是等价无穷小
D、xn与yn是同阶但不等价的无穷小
B
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
设空间有界区域Ω中,柱面x²+y²=1与平面z=0和x+z=1围成,Σ为Ω边界的外侧,计算曲面积分I=∰Σ2xzdydz+xzcosydzdy+3yzsinxdxdy
设曲线y=y(x)(x>0)经过点(1,2),该曲线上任一点P(x,y)到y轴的距离等于该点处的切线在y轴上的截距.(Ⅰ)求y(x);(Ⅱ)求函数f(x)=y(t)dt在(0,+∞)上的最大值.
设随机变量X与Y相互独立,且X~B(1,1/3),Y~(2,1/2),则P{X=Y}=______.
已知向量α1=,α2=,α3=,β=,γ=k1 α1+k2 α2+k3 α3,若γTαi=βTαi (i=1,2,3),则k12+k22+k32=______.