填空题(1989年理工数学Ⅰ

设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.

答案解析

π

讨论

计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。

设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.

计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.

设曲面:z=z(x,y)=x4+1/2 (√5-4y)∙x2+y2,柱壁面:y=x2-5/9,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]

由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),以及由曲线y=y(x)=(-√3<x≤0)和射线y=-√3 x(x≤0),直线x=-√3围成了两块平面图形F1和F2(其中,F1的边界长度为有限值,而F2的边界长度为无穷大).(1)计算出平面图形F1的面积S1=?(2)计算出平面图形F2的面积S2=?提示:采用平面极坐标(r,θ)作计算较为简单.[不定积分公式:∫tg2θdθ=tgθ-θ+C可直接引用]

设曲面:z=z(x,y)=(y-x2)2+√5/2 x2,柱壁面:9y-9x2+5=0,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]

计算第二型曲面积分∬S,其中S是下半球面z=-的下侧,a>0是常数.

已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy

已知S:(x-5)2+2y2+2(z+1)2=3,方向取外侧,计算∬S((x-5)dydz+ydzdx+zdxdy)/[(x-5)2+y2+z2 ](3/2)

设S是x2+y2+z2=1的外侧,计算∬Sx(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy