计算题(1992年理工数学Ⅰ

计算曲面积分I=∬Σ(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中Σ为上半球面z=的上侧.

答案解析

令Σ1表示 ,其法向量与z轴负向相同,Ω表示Σ与Σ1所围成的闭区域,有I=∬Σ+Σ1(x3+az2 )dydz+(y3+ax2 )dzdx+(z3+ay2)dxdy -∬Σ1(x3+az2 )dydz+(y3+ax2 )dzdx+(z3+ay2)dxdy,由高斯公式得∬Σ+Σ1(x3+az2 )dydz+(y3+ax2 )dzdx+(z3+ay2)dxdy =∭Ω3(x2+y2+z...

查看完整答案

讨论

设D由y=sinπx(0≤x≤1)与x轴转成,则D绕x旋转的旋转体体积为__________.

设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.

设曲面:z=z(x,y)=x4+1/2 (√5-4y)∙x2+y2,柱壁面:y=x2-5/9,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]

设曲面:z=z(x,y)=(y-x2)2+√5/2 x2,柱壁面:9y-9x2+5=0,圆柱体:x2+y2≤1,在三维空间O-XYZ中的“点的集合”分别为G1,G2,G3.(1)说明“点集”:G=G1∩G2∩G3构成了在三维空间O-XYZ中的有限长度的曲线L.(2)采用“参数方程”:,[t∈T;(T为参变数t的“取值集合”)]表示出曲线L.(3)计算曲线L的“总长度”:L=?提示:(i)选择参变数t=x,(ii)考虑柱壁面:y=x2-5/9与圆柱面:x2+y2=1满足相交或满足相切?[不定积分公式:∫dx=x/2 +a2/2 ln⁡(x+)+C可直接引用]

计算曲面积分I=∬∑x(8y+1)dydz+2(1-y2 )dxdz-4yzdxdy,其中∑是由曲线(1≤y≤3)绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于π/2.

已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成有界区域的面积为__________.

设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.

计算积分x3 J0 (x)dx

计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。

计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。