求曲面积分∬S(z3-x)dydz-xydzdx-3zdxdy.其中S是由曲面z=4-y2,平面x=0,平面x=3以及xOy平面围成立体的表面,取外侧.
求曲面积分∬S(z3-x)dydz-xydzdx-3zdxdy.其中S是由曲面z=4-y2,平面x=0,平面x=3以及xOy平面围成立体的表面,取外侧.
由Gauss公式
∬S(z^3-x)dydz-xydzdx-3zdxdy
=∭V(-1-x-3) dxdydz
=∭V(-x-4)dxdydz
=dxdy(-x-4)dz
=-176.
计算曲面积分∬S(2x+z)dydz+zdxdy,其中S为有向曲面z=x2+y2 (0≤z≤1),其法向量与z轴正向的夹角为锐角.
计算∯Σ 2zxdydz+yzdzdx-z2 dxdy,其中Σ是由曲面z=与z=所围成的表面外侧.
设f(x)在x=0处连续,且对任意的x∈R,有f(x)=f(3x),证明:f(x)是常值函数.
设f(x)=(1)求f(x)的傅里叶级数与傅里叶级数的和函数;(2)证明:1/n2 =π2/6.
设a,b,c,d皆为常数,cd≠0,说明并给出理由,当a,b,c,d满足什么条件时,f(x)=(ax+b)/(cx+d)无极值.
设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.
设级数sinnx/(1+nx2)(1)当x取何值时,级数绝对收敛?并说明理由;(2)当x取何值时,级数条件收敛?并说明理由.
计算积分∬Sx3 dydz+y3 dzdx+z3 dxdy,其中S为球面x2+y2+z2=a2 (a>0)的外侧.
计算 ∬∑x3dydz,其中∑: x2/a2 +y2/b2 +z2/c2 =1,z≥0,取外侧.
已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy
已知S:(x-5)2+2y2+2(z+1)2=3,方向取外侧,计算∬S((x-5)dydz+ydzdx+zdxdy)/[(x-5)2+y2+z2 ](3/2)
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成有界区域的面积为__________.
求∫Cx2ds,其中C为x2+y2+z2=a2 (a>0)与z=的交线.
计算积分∬SzdS,其中S为曲面x2+z2=2az(a>0)被曲面z=所截的部分.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.