设平面有界区域D位于第一象限,由曲线x2+y2-xy=1,x2+y2-xy=2与直线y=√3 x,y=0围成,计算∬D1/(3x2+y2 ) dxdy.
设平面有界区域D位于第一象限,由曲线x2+y2-xy=1,x2+y2-xy=2与直线y=√3 x,y=0围成,计算∬D1/(3x2+y2 ) dxdy.
采用极坐标计算:∬D1/(3x2+y2 ) dxdy=dθ1/(r2 (3 cos2θ+sin2θ ) ) r dθ=dθ 1/(3 cos2θ+sin2θ )∙1/r d=1/((3 cos2θ+sin2θ)) dθ∙lnr...
查看完整答案设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
计算曲面积分I=∬Σ(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中Σ为上半球面z=的上侧.
计算曲面积分∬S(xdydz+z2dxdy)/(x2+y2+z2 ),其中S是由曲面x2+y2=R2及平面z=R,z=-R(R>0)所围成的立体表面的外侧.
计算曲面积分∬ΣzdS,其中Σ为锥面z=在柱体x2+y2≤2x内的部分.
计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.
设S为椭球面x2/2+y2/2+z2=1的上半部分,点P(x,y,z)∈S,π为S在P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求∬Sz/(ρ(x,y,z)) dS.
已知平面区域D={(x,y)|y-2≤x≤,0≤y≤2},计算I=∬D(x-y)2/(x2+y2)dxdy.
计算积分∬Sx3 dydz+y3 dzdx+z3 dxdy,其中S为球面x2+y2+z2=a2 (a>0)的外侧.
计算 ∬∑x3dydz,其中∑: x2/a2 +y2/b2 +z2/c2 =1,z≥0,取外侧.
已知S={(x,y,z)│x2+4y2+9z2=1,z≤0}取下侧,求∬S(yez+x)dydz+(zex+y)dzdx+(xcosxy+z)dxdy
设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.
向量场u(x,y,z)=xy2i+ye2j+xln(1+z2)k在点P(1,1,0)处的散度divu=________.
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3) dx+(2x+y)dy的值最小.
设数量场u=ln,则div(gradu)=________________.
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,共中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于【 】