计算曲面积分∬ΣzdS,其中Σ为锥面z=在柱体x2+y2≤2x内的部分.
计算曲面积分∬ΣzdS,其中Σ为锥面z=在柱体x2+y2≤2x内的部分.
曲面Σ在xOy面上的投影区域为D_xy={(x,y)|x2+y2≤2x},dS==√2 dxdy,将积分曲面方程z=代入被积表达式,∬Σz dS=∬Dxy∙√2 dxdy=√2 dθ r2dr=32/...
查看完整答案设函数f(x)在区间[0,1]上连续,并设f(x) dx=A,求dxf(x)f(y)dy.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx.
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(x)=0是F(x)在x=0处可导的【 】
设函数f(x)在[0,1]上f'' (x)>0,则f' (0),f' (1),f(1)-f(0)或f(0)-f(1)的大小顺序是【 】
设有直线l:及平面π:4x-2y+z-2=0,则直线l【 】
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
计算:∮cdz/((z2+1)(z2+z+1)),其中c:为|z|<1.
计算sinx/x dxdy,其中D是由直线y=x以及抛物线y=x2围成的区域。
计算∬Dxdxdy,其中D是以O(0,0),A(1,2),B(2,1)为顶点的三角形区域。
计算第二型曲面积分x(x2+1)dydz+y(y2+2)dzdx+z(z2+3)dxdy其中Σ为球面x2+y2+z2=1的外侧.
计算第二型曲面积分∬S,其中S是下半球面z=-的下侧,a>0是常数.
设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
计算曲面积分I=∬Σ(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中Σ为上半球面z=的上侧.
计算曲面积分∬S(xdydz+z2dxdy)/(x2+y2+z2 ),其中S是由曲面x2+y2=R2及平面z=R,z=-R(R>0)所围成的立体表面的外侧.
计算曲面积分I=∬∑x(8y+1)dydz+2(1-y2 )dxdz-4yzdxdy,其中∑是由曲线(1≤y≤3)绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于π/2.
向量场u(x,y,z)=xy2i+ye2j+xln(1+z2)k在点P(1,1,0)处的散度divu=________.
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设数量场u=ln,则div(gradu)=________________.
设Γ是上半球面x2+y2+z2=R2 (z≥0)上的光滑曲线,起点和终点分别在平面z=0,z=R/2上,曲线的切线与z轴正方向的夹角为常数α∈(0,π/6),求曲线Γ的长度.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.