将f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
将f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
由傅里叶级数的系数公式得a0=2/2 (x-1)dx=0,an=2/2 (x-1) cos(nπx/2)dx=2/nπ(x-1) dsin(nπx/2)=4/(n2π2) [(-1)n-1](n=...
查看完整答案设函数f(x)在区间[0,1]上连续,并设f(x) dx=A,求dxf(x)f(y)dy.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx.
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(x)=0是F(x)在x=0处可导的【 】
设函数f(x)在[0,1]上f'' (x)>0,则f' (0),f' (1),f(1)-f(0)或f(0)-f(1)的大小顺序是【 】
设有直线l:及平面π:4x-2y+z-2=0,则直线l【 】
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
将函数f(x)=1/4 ln(1+x)/(1-x)+1/2 arctanx-x展开成x的幂级数.
设a1,a2,⋯,an是n个实数,都落在区间(-1,1)里.(1)证明 ∏1≤i,j≤n(1+aiaj)/(1-aiaj )≥1(2)找出以上不等式中等号成立的充分必要条件.
函数f(z)=1/(z-1)(z-2)在圆环区域:(1) 0<|z|<1;(2) 1<|z|<2;(3) 2<|z|<+∞;内是处处解析的。试把f(z)在这些区域内展成洛朗级数。
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
设4阶矩阵B=,C=,且矩阵A满足关系式A(E-C-1 B)T CT=E,其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
判断函数列fn(x)=(x/n)ln(x/n)在区间(0,1)上的一致收敛性(说明理由).
设f(x)是周期为2的周期函数,它在区间(-1,1]上定义为f(x)=,则f(x)的傅里叶级数在x=1处收敛于______.
设函数f(x)=x2,0≤x<1,而S(x)=bnsinnπx,-∞<x<+∞,其中bn=2f(x)sinnπxdx,x=1,2,3,…,则S(-1/2)等于【 】
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并由此求级数1/n2 的和.
设f(x)=,则其以2π为周期的傅里叶级数在点x=π处收敛于__________.
设函数f(x)=πx+x2 (-π<x<π)的傅里叶级数展开式为a0/2+(ancosnx+bnsinnx),其中系数b3的值为__________.