问答题(2021年理工数学Ⅰ2021年经济数学Ⅲ

在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.

(1) 求X的概率密度;

(2) 求Z的概率密度;

(3) 求E(X/Y).

答案解析

(1) 由题知:X~f(x) = ;(2) 由Y = 2-X,即Z = (2-X)/X,先求Z的分布函数:FZ (z) =P{Z≤z} = P{(2-X)/X≤z} = P{2/X-1≤z} 当z<1时,FZ (z) = 0;当z≥1时,...

查看完整答案

讨论

二次型f(x1,x2,x3 ) = (x1 + x2)2 + (x2 + x3)2 - (x3 - x1)2的正惯性指数依次为【 】

已知二次型f(x1,x2,x3 )=5x12+5x22+cx32-2x1 x2+6x1 x3-6x2 x3的秩为2.(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f(x1,x2,x3 )=1表示何种二次曲面.

设X1,X2,…,Xn为来自均值为θ的指数分布总体的简单随机样本,Y1,Y2,…,Ym为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中θ(θ>0)是未知参数.利用样本X1,X2,…,Xn,Y1,Y2,…,Ym求θ的最大似然估计量θ ̂,并求D(θ ̂).

设X1,X2,…,X16为来自总体N(μ,4)的简单随机样本.考虑假设检验问题:H0:μ≤10,H1:μ>10.Φ(x)表示标准正态分布函数,若该检验问题的拒绝域为W={X ̅≥11},其中X ̅=1/16·Xi ,则μ=11.5时,该检验犯第二类错误的概率为【 】

设总体X的概率密度为f(x)=,其中θ>-1是未知参数.X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.

设X1,X2为来自总体N(μ,σ2)的简单随机样本,其中σ(σ>0)是未知参数.若σ ̂=a|X1-X2 |为σ的无偏估计,则a=【 】

设(X1,Y1 ),(X2,Y2 ),…,(Xn,Yn )为来自总体N(μ1,μ2;σ12,σ22;ρ)的简单随机样本. 令θ=μ1 - μ2, X ̅=1/n·Xi ,Y ̅=1/n·Yi ,θ ̂=X ̅ - Y ̅,则【 】

设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t分布表 P{t(n)≤t_p (n)}=p

设随机变量X~U(0,3),随机变量Y服从参数为2的泊松分布,且X与Y的协方差为-1,则D(2X-Y+1)=【 】

已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4,可以经过正交变换=P化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.