设两个随机变量X、Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.
设两个随机变量X、Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.
因为X,Y相互独立且均服从正态分布N(0,1/2),故Z=X-Y也服从正态分布,且E(Z)=E(X)-E(Y)=0,D(Z)=D(X)+D(Y)=1/2+1/2=1,即 Z~N(0,1).于是有E(|X-Y|)=E(|Z|)=|...
查看完整答案某种原材料一天的消耗量是一个随机变量,概率密度函数为f(x)=,设每天的消耗量是相互独立的,分别求:两天的消耗量X和三天的消耗量Y的概率密度函数。
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设二维随机变量(X,Y)的概率密度为f(x,y)=,求随机变量Z=X+2Y的分布函数.
设随机变量X与Y独立,X服从正态分布N(μ,σ2),Y服从[-π,π]上的均匀分布,试求Z=X+Y的概率分布密度(计算结果用标准正态分布函数Φ(x)表示,其中Φ(x)=dt).
相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:X 0 1P 1/2 1/2则随机变量Z=max{X,Y}的分布律为:______________________________.
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
设随机变量X的概率密度为fX=,求随机变量Y=eX的概率密度fY (y).
从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
设随机变量X~N(0,4),随机变量Y~B(3 ,1/3),且X与Y不相关,则D(X-3Y+1)=【 】
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
求一个正交变换,化二次型f=x12+4x22+4x32-4x1 x2+4x1 x3-8x2 x3成标准形.
设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
设随机变量X1,X2,…,Xn独立同分布,且X1的4阶矩阵存在.设μk=E(X1k)(k=1,2,3,4),则由切比雪夫不等式,对∀ε>0,有P{|1/n Xi2 -μ2 |≥ϵ}≤【 】
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
微分方程y'+ytanx=cosx的通解为y=________________.
设A=,其中a_i≠0,b≠0(i=1,2,⋯,n),则矩阵A的秩r(A)=________.
设向量组α1,α2,α3线性相关,α2,α3,α4线性无关,问:(1) α1能否由α2,α3线性表出?证明你的结论.(2) α4能否由α1,α2,α3线性表出?证明你的结论.