问答题(1992年理工数学Ⅰ

设随机变量X与Y独立,X服从正态分布N(μ,σ2),Y服从[-π,π]上的均匀分布,试求Z=X+Y的概率分布密度(计算结果用标准正态分布函数Φ(x)表示,其中Φ(x)=dt).

答案解析

由题设知X与Y的概率密度分别为fX (x)=,-∞<x<+∞,fY (y)=,由卷积公式知Z的概率密度为fZ (z)=〖fX (x-y) fY (y)〗 dy=dy,令t=(z-y-μ)/...

查看完整答案

讨论

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.

已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.

设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).

若随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=________.

甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数______.

在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.(1) 求X的概率密度;(2) 求Z的概率密度;(3) 求E(X/Y).

设二维随机变量(X,Y)的概率密度为f(x,y)=,求随机变量Z=X+2Y的分布函数.

任意取定两个正的真分数,求它们的乘积不大于1/4的概率。

某车站于每个钟点的第5分钟、25分钟、50分钟发出一班车。假设一个乘客在某个钟点的第X分钟到达车站,且X在[0,60]上均匀分布。请计算该乘客的平均等候时间。

某种原材料一天的消耗量是一个随机变量,概率密度函数为f(x)=,设每天的消耗量是相互独立的,分别求:两天的消耗量X和三天的消耗量Y的概率密度函数。