设随机变量X服从参数为1的指数分布,则数学期望E(X+e-2X )=__________.
设随机变量X的概率密度函数为fX(x)=1/(π(1+x2)),求随机变量Y=1-∛X的概率密度函数fY(y).
随机变量ξ在(1,6)上服从均匀分布,则方程x2+ξx+1=0有实根的概率是______.
随机变量X密度函数为f(x)=试求:(1)A值 (2)X的分布函数F(x) (3) E=(1/X2 ) (4) D(X)
已知连续随机变量X的概率密度函数为f(x)=,则X的数学期望为______;X的方差为______.
设随机变量X服从均值为10,均方差为0.02的正态分布,已知Φ(x)=du, Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.
已知离散型随机变量X服从参数为2的泊松分布,即P{X=k}=2ke-2/k!,k=0,1,2,…,则随机变量Z=3X-2的期望E(Z)=________.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
随机变量z ~ N(2,32),则y=3z-2的数学期望为【 】
某车站于每个钟点的第5分钟、25分钟、50分钟发出一班车。假设一个乘客在某个钟点的第X分钟到达车站,且X在[0,60]上均匀分布。请计算该乘客的平均等候时间。
设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=【 】
设ξ,η是两个相互独立且均服从正态分布N(0,1/2)的随机变量,则随机变量|ξ-η|的数学期望E(|ξ-η|)=________.
从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
设4阶方阵A=,则A的逆矩阵A-1=____________.
随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.
已知级数(-1)n an=2,a2n-1 =5,则an 等于【 】
设D是xOy平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则∬D(xy+cosxsiny)dxdy等于【 】
(X,Y)的联合概率分布为试求:(1)DX (2)DY (3)cov(X,Y)
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则【 】
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是【 】
设随机变量X~N(0,1),在X=x条件下,随机变量Y~N(x,1),则X与Y的相关系数为【 】
设二维随机变量(X,Y)的概率分布为X\Y 0 1 2-1 0.1 0.1 b1 a 0.1 0.1若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
设随机变量X服从(0,2)上的均匀分布,则随机变量Y=X2在(0,4)内的概率分布密度fY(y)=__________.