设二维随机变量(X,Y)的概率分布为
X\Y 0 1 2
-1 0.1 0.1 b
1 a 0.1 0.1
若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
A、-0.6
B、-0.36
C、0
D、0.48
设二维随机变量(X,Y)的概率分布为
X\Y 0 1 2
-1 0.1 0.1 b
1 a 0.1 0.1
若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
A、-0.6
B、-0.36
C、0
D、0.48
B
设随机变量X~N(0,4),随机变量Y~B(3 ,1/3),且X与Y不相关,则D(X-3Y+1)=【 】
设随机变量序列X1,X2,…,Xn,…独立同分布,且X1的概率密度为f(x)=,则当n→∞时,1/n Xi2 依概率收敛于【 】
已知函数f(x)=,则dxf(x)f(y-x)dy=__________.
求幂级数((-4)n+1)/(4n (2n+1)) x2n 的收敛域及和函数S(x).
已知an=-(-1)n/n(n=1,2,…),则{an}【 】
已知函数f(x)=esinx+e-sinx,则f'''(2π)=__________.
设二维随机变量(X,Y)的概率分布为X\Y 0 1 2-1 0.1 0.1 b1 a 0.1 0.1若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
设二维随机变量(X,Y)的概率分布为X\Y 0 1 2-1 0.1 0.1 b1 a 0.1 0.1若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=,求随机变量Z=X+2Y的分布函数.
设随机变量X与Y独立,X服从正态分布N(μ,σ2),Y服从[-π,π]上的均匀分布,试求Z=X+Y的概率分布密度(计算结果用标准正态分布函数Φ(x)表示,其中Φ(x)=dt).
相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:X 0 1P 1/2 1/2则随机变量Z=max{X,Y}的分布律为:______________________________.
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.
设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设随机变量X服从(0,2)上的均匀分布,则随机变量Y=X2在(0,4)内的概率分布密度fY(y)=__________.
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则【 】
设随机变量X服从参数为1的指数分布,则数学期望E(X+e-2X )=__________.
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
设ξ,η是两个相互独立且均服从正态分布N(0,1/2)的随机变量,则随机变量|ξ-η|的数学期望E(|ξ-η|)=________.
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是【 】
从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.