(ln(1+x)-x)/x2
(ln(1+x)-x)/x2
应用洛必达法则,对分子、分母同时求导有:(ln(1+x)-x)/x2 =(1/(1+x)-1)/2x,再次使用洛必达法则:(1/(1+x)-1)/2x=(-1)/(2(1+x)2 )=-1/2.∴原...
查看完整答案设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f''(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:|f'(c)|≤2a+b/2.
设x>0时,f(x)=,求证:x→0+时,f(x)=e+Ax+Bx2+o(x2),并求A,B之值.
设函数f(x)=sinx/(1+x2)在x=0处的3次泰勒多项式为ax+bx2+cx3,则【 】
设函数f(x)在区间[0,1]上连续,则f(x)dx=【 】
当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.
当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.
设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】
已知f(x)在[a,b]上二阶可导,且f''(x)≤0,证明:f(x)dx≤(b-a)f((a+b)/2).
设函数f(x)在(0,+∞)上连续可导,f(x)存在,f(x)的图形在(0,+∞)是上凸的,求证:f′(x)=0.
不查表,求方程x2sin=2x-1977的近似解,精确到0.001.
设函数f(x)=ax-blnx(a>0)有两个零点,则b/a的取值范围是【 】
设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.
求函数f(x)=x2/(1+x2 )的极值与拐点,并求拐点处的切线方程.
设函数f(x)在开区间(a,b)内存在二阶导数f''(x),且在(a,b)内f''(x)>0,证明:对于任意两点x1,x2∈(a,b),恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2.