曲线对应于t=π/6点处的法线方程是____________.
设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
确定函数y=(x+1)/x2 的单调区间、极值、凸凹区间、拐点以及渐近线.
设A=E-ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f''(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:|f'(c)|≤2a+b/2.
设对任意x>0,曲线y=f(x)在点(x,f(x))处的切线在y轴上的截距等于1/x f(t)dt,求f(x)的一般表达式.
设变换可把方程6 ∂2z/∂x2 +∂2z/∂x∂y-∂2z/∂x∂y=0化简为∂2z/∂u∂v=0,求常数a,其中z=z(x,y)有二阶连续的偏导数.
计算曲面积分∬S(2x+z)dydz+zdxdy,其中S为有向曲面z=x2+y2 (0≤z≤1),其法向量与z轴正向的夹角为锐角.
设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】
设(f(x)-f(a))/(x-a)2=-1,则在x=a处【 】
求正的常数a与b,使等式1/(bx-sinx)t2/dt=1成立.
设y=f(x)是方程y''-2y'+4y=0的一个解,且f(x0)>0,f' (x0)=0,则函数f(x)在点x0处【 】
已知f(x)在x=0的某个领域内连续,且f(0)=0,f(x)/(1-cosx)=2,则在点x=0处f(x)【 】
若g(x)在x=c处二阶导数存在,且g' (c)=0,g'' (c)<0,则g(c)为g(x)的一个极大值.