问答题(1998年全国统考

在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A-C=π/3,求sin⁡B的值.

以下公式供解题是参考:

sinθ+sinφ=2sin (θ+φ)/2 cos (θ-φ)/2,

sinθ-sinφ=2cos (θ+φ)/2 sin (θ-φ)/2,

cosθ+cosφ=2cos (θ+φ)/2 cos (θ-φ)/2,

cosθ-cosφ=-2sin (θ+φ)/2 sin (θ-φ)/2.

答案解析

由正弦定理和已知条件a+c=2b得sin⁡A+sin⁡C=2sin⁡B.由和差化积公式得2·sin(A+C)/2 cos(A-C)/2=2sin⁡B.由A+B+C=π得sin(A+C)/2=cosB/2,又A-C=π/3得/2·...

查看完整答案

讨论

△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.

△ABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 cos2(π/2 + A) + cos A = 5/4.(1) 求 A.(2) b − c =/3a, 证明: △ABC 是直角三角形.

在 △ABC 中, cosC =2/3, AC = 4, BC = 3, 则 tanB =【 】

已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】

在 △ABC 中, cosC = 2/3 , AC = 4, BC = 3, 则 cosB =【 】

在 ① ac =, ② csin A = 3, ③ c = b 这三个条件中任选一个, 补充在下面问题中, 若问题中的三角形存在, 求 c 的值; 若问题中的三角形不存在, 说明理由.问题: 是否存在 △ABC, 它的内角 A, B, C 的对边分别为 a, b, c, 且 sinA = sinB, C = π/6 ,__________?注: 如果选择多个条件分别解答, 按第一个解答计分.

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.