计算题(1922年东南大学

解联立方程式

答案解析

暂无答案

讨论

A polynomial P with integer coefficients is square-free if it is not expressible in the form P=Q² R, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let Pn be the set of polynomials of the form1+a1 x+a2 x²+⋯+an xnwith a1,a2,⋯,an∈{0,1}. Prove that there exists an integer N so that, for all integers n>N, more than 99% of the polynomials in Pn are square-free.【译】我们称整系数多项式P是无平方因子的,如果其不能表示为P=Q² R的形式,这里Q,R为整系数多项式且Q不为常数.对于正整数n,记Pn为如下 形式的多项式组成的集合:1+a1 x+a2 x²+⋯+an xn这里a1,a2,⋯,an∈{0,1}.证明:存在整数N,使得对任意的整数n≥N,Pn中超过99%的多项式都是无平方因子的.

令A,B,C,D,E,F是三阶实方阵,且=.已知A=,B=且C=A+B-I,则[|detF|]=______.

有理数加群(Q,+),记所有分母不超过10的有理数构成的子集为G,其对应的陪集GZ记为G ̅,则Q/Z包含G ̅的最小子群的阶为______.

分解因式:x2-4xy+4y2-4z2.

甲乙两容器内都盛有酒精,甲有v1公斤,乙有v2公斤.甲中纯酒精与水(重量)之比为m1:n1,乙中纯酒精与水之比为m2:n2,问将二者混合后所得液体中纯酒精与水之比是多少?

将多项式x5y-9xy5分别在下列范围内分解因式:1. 有理数范围; 2. 实数范围;3. 复数范围.

如果n是正整数,那么1/8[1-(-1)n](n2-1)的值【 】

已知正整数n,恰有36个不同的质数整除n,对k=1,2,3,4,5,记[(k-1)n/5,kn/5]中互质的整数个数为Cn,已知C1,C2,C3,C4,C5不完全相同.求证:(Ci - Cj)2 ≥236.

安徽省代数式

试将下列繁分数简单之: