关注优题吧,注册平台账号.
求极限nxnexdx.
∵nxnexdx≤nexndx= ne/(n+1) xn+1=n/(n+1) e→e(n→∞),同时,nxnexdx≥nxnexdx≥n∙e1-1/√n xndx=e1-1/√n n/(n+1) [1...
南京工业大学数列极限存在准则
设数列{xn}为x1=1,xn+1= (n=1,2,…),求证数列{xn}收敛,并求其极限.
设数列{xn}为x1=,x2=,xn+2=(n=1,2,…),求证数列{xn}收敛,并求其极限.
设-π/2≤xn≤π/2,则【 】
已知an=-(-1)n/n(n=1,2,…),则{an}【 】
对有界数列{xn},下面哪个说法可作为xn=L的定义【 】(此题不全,待更新)
设f(x)=sin(a1 x)+sin(a2 x)+sin(a3 x),a1,a2,a3>0.证明:存在数列{tn}使得tn=+∞且f(x+tn)=f(x)对∀x∈R一致成立.
已知an=+∞,证明(a1+a2+⋯+an)/n=+∞,并举例说明反过来不成立.
证明数列{sinn}发散.
设数列{xn}满足1/xn+1 +lnxn<1,证明:xn存在,并求之.(已知:1/x+lnx≥1)
已知α>0,求极限.
已知an=a≠0,试用ε-N语言证明:1/an =1/a.
设an=a,且a≠0,则当n充分大时,有【 】.
设{an},{bn},{cn}均为非负数列,且an=0, bn=1,cn=∞,则必有【 】
莫斯科财政金融学院数列极限
在一个虚拟的世界中,每个居民(设想为没有大小的几何点)依次编号为1,2,⋯.为了抗击某种疫情,这些居民要接种某疫苗,并在注射后在现场留观一段时间。现在假设留观的场所是平面上的一个半径为1/4的圆周。为了安全,要求第m号居民和第n居民之间的距离dm,n满足(m+n)dm,n≥1这里我们考虑的是圆周上的距离,也就是两点间劣弧的弧长。那么1.选择题(4分)下列选项( )符合实际情况。A 这个留观室最多能容纳8个居民B 这个留观室能容纳的居民个数有大于8的上限:C 这个留观室可以容纳任意多个居民。2.证明题(6分)证明你的论断。
设xn=(1+1/n2 )(1+2/n2 )…(1+n/n2 ),求xn.
重庆大学数列极限
设fn (x)在(a,b)上单调递增,且有实数列{Mn },n=1,2,3,…使得∀x∈(a,b),|fn (x)|≤Mn,若fn (x)在(a,b)上一致收敛于f(x),证明:(1)存在M>0,使得∀x∈(a,b),|f(x)|≤M;(2)极限f(x)存在.
证明不等式1/< - <1/ n=1,2,…
设连续函数f(x)满足f(a+b-x)=f(x),∀x∈[a,b],则积分xf(x)dx等于【 】
南京大学定积分的概念与性质
设f∈[0,2π],证明:f(x)|sinnx|dx=2/πf(x)dx.
设f(x)在(0,1)可微,且有x2 f(x) dx=0,证明:存在θ∈(0,1),使得f' (θ)=-f(θ)/θ.
设f(x),g(x)在区间[a,b]上连续,且g(x)取正值,由积分中值定理有f(t)g(t)dt=f(ξ)g(t) dt(a≤ξ≤x≤b)若f+' (a)存在且f+' (a)≠0,求(ξ-a)/(x-a).
当某公司推出一个新的社交软件时,公司的市场部门除了会关心该软件的活跃客的总人数随时间的变化,也会对客户群体的一些特征做具体的调研和分析。我们用n(t,x)表示客户的数量密度(以下简称密度),这里t表示时间,而x表示客户对该社交软件的使用时长,那么在t时刻,对于0<x1<x2,使用时长介于x1和x2之间的客户数量为n(t,x)dx。我们假设,密度n(t,x)随着时间演化受以下几个因素的影响:假设1.当客户持续使用该社交软件时,他的使用时长随时间线性增长。假设2.客户在使用过程中,可能会停止使用,我们假设停止速率d(x)>0只跟使用时长x有关。假设3.新客户的来源有两个。①公司的宣传:单位时间内因此增加的人数是时间的函数,用c(t)表示。②老客户的宣传:老客户会主动向自己的同事、朋友等推荐使用该社交软件,推荐成功的速率跟客户的使用时长x有关,记作b(x)。假设如果在某一时刻,记为t=0时,密度函数是已知的,n(0,x)=n0 (x)。可以推导出,n(t,x)的时间演化满足如下的方程 (1)这里N(t)可解读为新客户的增加速率。我们假设b,d∈(0,∞),即b(x)和d(x)正且(本质)有界。以下,我们先做一个简化假设:c(t)≡0,即新客户的增加只跟老客户的宣传有关。(i)问答题(10分)根据假设1和假设2,形式地推导出(1)中n(t,x)所满足的偏微分方程,需要在推导过程中指出模型假设和数学表达式之间的对应关系。再根据假设3,解释(1)中N(t)的定义的含义。(ii)问答题(10分)我们想要研究新客户的增加速率N(t)和推荐成功速率b(x)之间的关系。为此,请推导出一个N(t)所满足的方程,且方程中只包含N(t),n0 (x),b(x),d(x),而不包含n(t,x)。并证明,N(t)满足如下估计|N(t)|≤‖b‖∞|n0 (x)|dx,这里‖∙‖∞表示L∞范数。(iii)证明题(10分)最后,我们想要研究,在充分长的时间之后,数量密度函数n(t,x)有什么渐近的趋势。由于客户总人数可能一直在增加,所以我们不方便直接研究数量密度函数n(t,x),而更应该去看一个重整化的密度函数。为此,我们首先假设如下的特征值问题有唯一解(λ0,φ(x)):并且它的对偶问题也有唯一的解ψ(x):然后,我们定义重整化密度n ̃(t,x)≔n(t,x)e-λ0 t。证明,对于任意凸函数H:R+→R+满足H(0)=0,我们有d/dt ψ(x)φ(x)H()dx≤0,∀t≥0,并证明ψ(x)n(t,x))dx=eλ0t ψ(x) n0 (x)dx.
数值求积f(x)dx时(1)试写出直接用梯形公式的计算式T1;(2)将[a,b]n等分,用Tn表示用复化梯形公式求得的积分值,试写出Tn的计算式;(3)若将步长分半(即步长二分),试给出T2n与Tn的递推关系;(4)若用精度控制|T2n - Tn |<ε,试写出“变步长梯形法”的算法框图.
用Romberge方法求dx的近似值。(给定n=4)
设f(x)在[0,1]上连续,f(x)dx=0,xf(x)dx=1,则存在x0∈[0,1]使|f(x0 )|>4.
设f(x)连续,且f(t)dt=x,则f(7)=______.