用Romberge方法求dx的近似值。(给定n=4)
设A∈Rm×n,rankA=r,证明存在可逆矩阵M∈Rm×m及正交矩阵P∈Rn×n,使得MAP= 其中Rm×n表示 m×n实数矩阵空间,Ir表示r×r单位矩阵,C∈Rr×(n-r)。
设A为n×n复矩阵,证明:存在一个n维向量α,使α,Aα,…,An-1α线性无关的充要条件是A的每个特征向量值恰有一个线性无关的特征向量。
设A,B是n×n矩阵,φ(λ)为A的特征多项式,证明φ(B)是奇异矩阵的充要条件是A,B有公共的特征值。
设A为实对称矩阵。证明当实数t充分大之后,tI+A是正定矩阵,其中I表示单位矩阵。
考虑循环矩阵A=证明:(1) A=a0 In+a1 T+a2 T2+⋯+an-1 Tn-1,其中T=In表示n×n单位矩阵。(2) T相似于对角矩阵。(3) A相似于对角矩阵。
设x1-x2=a1,x2-x3=a2,x3-x4=a3,x4-x5=a4,x5-x1=a5。证明此方程组有解的充分必要条件为ai =0。
证明方程dx/dt=Ax(A为n×n实矩阵)有以ω(ω≠0)为周期的周期解的充要条件是系数矩阵A至少有一个形如i 2πμ/ω的特征根,其中μ为整数。
设f∈[0,2π],证明:f(x)|sinnx|dx=2/πf(x)dx.
设f(x)在(0,1)可微,且有x2 f(x) dx=0,证明:存在θ∈(0,1),使得f' (θ)=-f(θ)/θ.
证明:xasinxdx∙a-cosx dx≥π³/4其中,a>0为常数.
设f(a)=0,f(x)在[a,b]上的导数连续,求证:1/(b-a)²·|f(x)|dx≤1/2 maxx∈[a,b] |f'(x)|,x∈[a,b]
设M=sinx/(1+x2)cos4x dx,N=(sin3x+cos4x )dx,P=(x2sin3x-cos4x)dx,则有【 】