设数列{xn}为x1=1,xn+1= (n=1,2,…),求证数列{xn}收敛,并求其极限.
设数列{xn}为x1=1,xn+1= (n=1,2,…),求证数列{xn}收敛,并求其极限.
因为x2= = >1=x1,且归纳假设0<xn-1<xn ⇒ 0<6+xn-1<6+xn ⇒ xn= < = xn+1,所以数列{xn}单调递增。又x1 < ...
查看完整答案已知φ(x)=|x-t|f(t)dt,若积分存在,且f(x)>0,证明:φ(x)为[a,b]上的凸函数.
当x→0时,函数f(x)=ax+bx2+ln(1+x)与g(x)=ex^2 -cosx是等价无穷小,则ab=______.
已知{xn },{yn}满足x1=yn=1/2,xn+1=sinxn,yn+1=yn2 (n=1,2,⋯) ,则当n→∞时【 】
当x→0时,用“o(x)”表示比x高阶的无穷小,则下列式子中错误的是【 】
已知函数f(x)是周期为π的奇函数,且当x∈(0,π/2)时f(x)=sinx-cosx+2,则当x∈(π,π/2)时f(x)=____________________.
函数y=sinx|sinx|(其中|x|≤π/2)的反函数为____________________.
设函数f(x)在[a,b]上有定义,在(a,b)上连续.下面哪个条件能够判定函数f(x)在[a,b]上有最大值【 】
在平面直角坐标系中,椭圆x2+xy+y2=1的长轴方程为__________,位于x轴上半平面内的焦点坐标为__________.