求
求
暂无答案
验证函数f(x)=lnx在区间[1,+∞)上一致连续,但在(0,1)上不一致连续.
证明:f(x)=tx-1 e-t lntdt 在(0,+∞)上连续.
设f(x)在x=0处连续,且对任意的x∈R,有f(x)=f(3x),证明:f(x)是常值函数.
已知φ(x)=|x-t|f(t)dt,若积分存在,且f(x)>0,证明:φ(x)为[a,b]上的凸函数.
当x→0时,函数f(x)=ax+bx2+ln(1+x)与g(x)=ex^2 -cosx是等价无穷小,则ab=______.
已知{xn },{yn}满足x1=yn=1/2,xn+1=sinxn,yn+1=yn2 (n=1,2,⋯) ,则当n→∞时【 】
给定x0>0以及[0,+∞)上连续函数f(x),证明:至多具有一个定义于[0,+∞)上的连续函数y(x)满足对任意的x>0,有dy/dx=-y³+f(x),其中y(0)=y0.