设f(x)在[0,1]上连续,f(x)dx=0,xf(x)dx=1,则存在x0∈[0,1]使|f(x0 )|>4.
设F=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)k.求:F沿螺线r=acost∙i+asint∙j+bt∙k的一段(t:0→π/4)所作的功.
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
设f(x)=nx(1-x)n(n为自然数),求(1) f(x)在[0,1]上的最大值M(n)={f(x)}.(2)求M(n).
求解理想不可压缩流体绕圆柱流动的速度势函数u(r,θ),满足urr+1/r ur+1/r2 uθθ,r>a(半径为a的圆外区域),ur (a,θ)=0,u=Vrcosθ,V为常数.
求解热传导方程定解问题。ut=uxx-2u 0<x<π,t>0,u(x,0)=sinx,u(0,t)=0,u(π,t)=0.