问答题(2024年国际数学奥林匹克

憨豆特工在一个2024行2023列的方格表上做游戏.方格表中恰有2022个方格各藏有一个坏人.初始时,憨豆不知道坏人的位置,但是他知道除了第一行和最后一行之外,每行恰有一个坏人,且每列至多有一个坏人.

憨豆想从第一行移动到最后一行,并进行若干轮尝试,在每一轮尝试中,憨豆可以在第一行中任意选取一个方格出发并不断移动,他每次可以移动到与当前所在方格有公共边的方格内.(他允许移动到之前已经到达过的方格.)若憨豆移动到一个有坏人的方格,则此轮尝试结束,并且他被传送回第一行开始新的一轮尝试,坏人在整个游戏过程中不移动,并且憨豆可以记住每个他经过的方格内是否有坏人.若憨豆到达最后一行的任意一个方格,则游戏结束.

求最小的正整数n,使得不论坏人的位置如何分布,憨豆总有策略可以确保他能够经过不超过n轮尝试到达最后一行.

答案解析

暂无答案

讨论

在△ABC中AB<AC<BC.设△ABC的内心为I,内切圆为ω.点X(异于C)在直线BC上,满足过X且平行于AC的直线与圆ω相切.点Y(异于B)在直线BC上,满足过Y且平行于AB的直线与圆ω相切.设直线AI与△ABC的外接圆交于另一点P(异于A).设K与L分别为线段AC和AB的中点.证明:∠KIL+∠YPX=180°.

设a1,a2,a3,⋯是一个无穷项的正整数序列,且N是一下正整数.已知对任意整数n>N,an等于an-1在a1,a2,⋯,an-1中出现的次数.证明:序列a1,a3,a5,⋯与序列a2,a4,a6,⋯两者至少有一个是最终周期的.(一个无穷项的序列b1,b2,b3,⋯称为最终周期的,如果存在正整数p和M使得bm+p=bm对所有整数m≥M均成立)

求所有正整数对(a,b)满足:存在正整数g和N使得gcd⁡(an+b,bn+a)=g对所有整数n≥N均成立.(注:gcd⁡(x,y)表示x与y的最大公约数).

求所有实数α满足:对任意正整数n,整数⌊α⌋+⌊2α⌋+⋯+⌊nα⌋均为n的倍数.(注:⌊z⌋表示小于等于z的最大整数.例如,⌊-π⌋=-4,⌊2⌋=⌊2.9⌋=2)

设函数f(x)=xlnx.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)≥a(x-√x)在x∈(0,+∞)上恒成立,求a的取值范围;(3)若x1,x2∈(0,1),证明:|f(x1)-f(x2)|≤|x1-x2 |1/2.

已知数列{an}是公比大于0的等比数列,其前n项和为Sn,且a1=1,S2=a3-1.(1)求数列{an}的前n项和Sn;(2)设bn=,b1=1,其中k是大于1的正整数.(ⅰ)当n=ak+1时,求证:bn-1≥a_k∙b_k;(ⅱ)求∑i=1Snbi .

已知椭圆x²/a² +y²/b² =1(a>b>0)的离心率为e=1/2,左顶点为A,下顶点为B,C是线段OB的中点,S△ABC=3√3/2.(1)求椭圆的方程;(2)过点(0,-3/2)的动直线与椭圆有两个交点P,Q,在y轴上是否存在点T使得(TP)⋅(TQ)≤0恒成立?若存在,求出T点纵坐标的取值范围;若不存在,请说明理由.

已知四棱柱ABCD-A1 B1 C1 D1中,底面ABCD为梯形,AB∥CD,AA1⊥平面ABCD,AD⊥AB,其中AB=AA1=2,AD=DC=1,N是B1 C1的中点,M是DD1的中点.(1)求证:D1 N∥平面CB1 M;(2)求平面CB1 M与平面BB1 CC1的夹角的余弦值;(3)求点B到平面CB1 M的距离.

在△ABC中,cosB=9/16,b=5,a/c=2/3.(1)求a;(2)求sinA;(3)求cos⁡(B-2A).

若函数f(x)=2√(x²-ax)-|ax-2|+1有唯一零点,则a的取值范围是________.

已知命题p:∀x∈R,|x+1|>1;命题q:∃x>0,x³=x,则【 】

有红、黄、蓝3种不同颜色的帽子各足够多顶.一个游戏团队有n(n≥4)个人,每人都知晓团队的人数为n,帽子的颜色有红、黄、蓝3种可能. 他们围成一圈进行如下游戏:步骤1:AI给每个人分配一顶帽子,每人都看不到自己的帽子,只能看到与自己相邻的两人(即顺时针、逆时针离他最近的人)的帽子;步骤2:所有人同时猜自己的帽子颜色,只要有一个人猜对,就视作游戏团队获胜;若所有人都猜错,则AI获胜.游戏团队可在步骤1之前约定猜帽子颜色的策略.(1) n=4时,游戏团队是否有必胜策略?证明你的结论;(2) n=9999时,游戏团队是否有必胜策略?证明你的结论.

设α,β为两个平面,m,n为两条直线,且α∩β=m.下述四个命题:①若m∥n,则n∥α或n∥β②若m⊥n,则n⊥α或n⊥β③若n∥α,则n∥β或m∥n④若n与α,β所成角相等,则m⊥n其中所有真命题的编号是【 】

嫦娥”登月、“神舟”巡天,我国不断谱写飞天梦想的新篇章。基于太空失重环境的多重效应,研究人员正在探究植物在微重力环境下生存的可能性。他们设想,如果能够在太空中种植新鲜水果和蔬菜,则不仅有利于航天员的身体健康,而且还可以降低食物的上天成本,同时,可以利用其消耗的二氧化碳产生氧气,为航天员生活与工作提供有氧环境。以下哪项如果为真,则可能成为研究人员实现上述设想的最大难题?

十多年前曾有传闻:M 国从不生产一次性筷子,完全依赖进口,而且M国 96%的一次性筷子来自中国。2019 年有媒体报道:“去年M国出口的木材中,约有40%流向了中国市场,而且今年中国订单的比例还在进一步攀升,中国已成为M国木材出口中占比最大的国家。”张先生据此认为,中国和M国木材进出口角色的转换,表明中国人的环保意识已经超越M国以下哪项如果为真,最能削弱张先生的观点?

某公司为了让员工多运动,近日出台一项规定:每月按照18 万步的标准对员工进行考核,如果没有完成步行任务,则按照“一步一分钱”标准扣钱。有专家认为,此举鼓励运动,看似对员工施加压力,实质上能够促进员工的身心健康,引导整个企业积极向上。以下各项如果为真,则除哪项外均能质疑上述专家的观点?

通过第三方招聘进入甲公司从事销售工作的职员均具有会计学专业背景。孔某的高中同学均没有会计学专业背景,甲公司销售部经理孟某是孔某的高中同学,而孔某是通过第三方招聘进入甲公司的。根据以上信息,可以得出以下哪项?

入冬以来,天气渐渐寒冷。11 月 30 日,某地气象台对未来 5 天的天气预报显示:未来5天每天的最高气温从4°C开始逐日下降至-1°C;每天的最低气温不低于-6°C:最低气温-6°C只出现在其中一天。预报还包含如下信息:(1) 未来5 天中最高气温和最低气温不会出现在同一天,每天的最高气温和最低气温均为整数;(2)若5号的最低气温是未来 5 天中最低的,则2号的最低气温比4 号的高4°C;(3)2号和4号每天的最高气温与最低气温之差均为 5°C.根据以上预报信息,可以得出以下哪项?

已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】

已知m,l是直线,α,β是平面,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且a//β,则m//l.其中正确的命题是序号是 ________(注:把你认为正确的命题的序号都填上)

设向量a=(x+1,x),b=(x,2),则【 】

已知向量a,b,则“(a+b )∙(a-b )=0”是“a=b或a=-b”的【 】条件.

关于函数f(x)=4 sin⁡(2x+π/3),x∈R,有下列命题:①由f(x1)=f(x2)=0可得x1 - x2必是π的整倍数;②y=f(x)的表达式可改写为y=4 cos⁡(2x-π/6);③y=f(x)的图像关于点(-π/6,0)对称;④y=f(x)的图像关于直线x=-π/6对称.其中正确的命题的序号是 ________,(注:把你认为正确的命题的序号都填上)

α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线.给出四个论断:①m⊥n ②α⊥β ③n⊥β ④m⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________________.

已知sin⁡α>sin⁡β,那么下列命题成立的是【 】

命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

下列命题中正确的命题是【 】

在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.