已知椭圆x²/a² +y²/b² =1(a>b>0)的离心率为e=1/2,左顶点为A,下顶点为B,C是线段OB的中点,S△ABC=3√3/2.
(1)求椭圆的方程;
(2)过点(0,-3/2)的动直线与椭圆有两个交点P,Q,在y轴上是否存在点T使得(TP)⋅(TQ)≤0恒成立?若存在,求出T点纵坐标的取值范围;若不存在,请说明理由.
已知椭圆x²/a² +y²/b² =1(a>b>0)的离心率为e=1/2,左顶点为A,下顶点为B,C是线段OB的中点,S△ABC=3√3/2.
(1)求椭圆的方程;
(2)过点(0,-3/2)的动直线与椭圆有两个交点P,Q,在y轴上是否存在点T使得(TP)⋅(TQ)≤0恒成立?若存在,求出T点纵坐标的取值范围;若不存在,请说明理由.
解答过程见word版
已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】
抛物线C:y²=4x的准线为l,P为C上的动点,过P作⨀A:x²+(y-4)²=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则【 】
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
已知双曲线的两个焦点分别为(0,4),(0,-4),点(-6,4)在该双曲线上,则该双曲线的离心率为【 】
若集合{(x,y)│y=x+t(x²-x),0≤t≤1,1≤x≤2}表示的图形中,两点间最大的距离为d,面积为S,则【 】
设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.
已知点P在直线x=2上移动,直线l通过原点且与OP垂直,通过点A(1,0)及点P的直线m和直线l交于点Q.求点Q的轨迹方程,并指出该迹的名称和它的焦点坐标.
椭圆9x2 + 16y2 = 144的离心率为______.
已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.
如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.
如果方程x2 + ky2 = 2表示焦点在y轴上的椭圆,那么实数k的取值范围是【 】
椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】
椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】
已知向量a,b满足|a|=1,|a+2b|=2,且(b-2a)⊥b,则|b|=【 】
记△ABC的内角A,B,C对应的边分别为a,b,c,已知sinA+√3 cosA=2.(1)求A.(2)若a=2,√2 bsinC=csin2B,求△ABC的周长.
记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b²=9/4 ac,则sinA+sinC=【 】
已知b是a,c的等差中项,直线ax+by+c=0与圆x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
已知直线ax+y+2-a与圆C:x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
求圆x²+y²-2x+6y=0的圆心到x-y+2=0的距离【 】
已知k∈R,a=(2,5),b=(6,k),且a∥b ,则k的值为________.
已知点B在点C正北方向,点D在点C正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=______(精确到0.1度).