求圆x²+y²-2x+6y=0的圆心到x-y+2=0的距离【 】
A、2√3
B、2
C、3√2
D、√6
已知向量a,b满足|a|=1,|a+2b|=2,且(b-2a)⊥b,则|b|=【 】
已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】
抛物线C:y²=4x的准线为l,P为C上的动点,过P作⨀A:x²+(y-4)²=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则【 】
记△ABC的内角A,B,C对应的边分别为a,b,c,已知sinA+√3 cosA=2.(1)求A.(2)若a=2,√2 bsinC=csin2B,求△ABC的周长.
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
已知双曲线的两个焦点分别为(0,4),(0,-4),点(-6,4)在该双曲线上,则该双曲线的离心率为【 】
记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b²=9/4 ac,则sinA+sinC=【 】
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.
若三直线aix+biy+ci=0(i=1,2,3)相交于一点,则=0.试证之.
在定角 XOY 的二边上各取二点 P、Q,使 OP +OQ = a. 试求 PQ 的中点的轨迹.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
已知一点 A(-1,-2),求至椭圆 x² + 5y² = 5 的切线方程.
在平面直角坐标系中,函数y=(x+1)/(|x|+1)的图像上有三个不同的点位于直线l上,且这三个点的横坐标之和为0.求l的斜率的取值范围.