问答题(2024年上海市

已知双曲线Γ:x²-y²/b² =1(b>0),左右顶点分别为A1,A2,过点M(-2,0)的直线l交双曲线Γ于P,Q两点.

(1)若离心率e=2,求b的值;

(2)若b=2√6/3,△MA2P为等腰三角形,且点P在第一象限,求点P的坐标;

(3)连接并延长OQ,交双曲线Γ于点R,若(A1R) ⋅(A2P) =1,求b的取值范围.

答案解析

解答过程见word版

讨论

已知抛物线y2=4√5 x,F1,F2分别是双曲线x2/a-y2/b=1(a>0,b>0)的左右焦点,抛物线的准线过双曲线的左焦点F1,与双曲线的渐近线交于点A,,若∠F1 F2 A=π/4,则双曲线的标准方程是【 】

英:Find the equation to the normal to hyperbola x2/a2 -y2/b2 =1 at the point (x1,y1) . 汉:求双曲线x2/a2 -y2/b2 =1在点(x1,y1)处的法线方程.

The point of contact of a tangent to an hyperbola is midway between the points in which the tangent meets the asymptotes.

双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.

Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.

双曲线x²/100-y²/64=1的焦点为S,S1;,其中S位于x正半轴上. P为双曲线在第一象限上的一点,记∠SPS1=α,α<π/2. 过点S且斜率与双曲线在P点切线相同的直线,与直线S1 P交于P1点,记P到直线SP1的距离为δ,β=S1 P.则不超过βδ/9 sin⁡α/2的最大整数为______.

于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.

有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.

试证双曲线之两渐近线及任一切线所成之三角形之面积等于一常数.

在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.