填空题(2024年上海市

已知抛物线y²=4x上有一点P到准线的距离为9,那么点P到x轴的距离为______.

答案解析

4√2

【解析】

解答过程见word版

讨论

已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】

在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.

已知双曲线的两个焦点分别为(0,4),(0,-4),点(-6,4)在该双曲线上,则该双曲线的离心率为【 】

设椭圆C:x²/a² +y²/b² =1(a>b>0)的右焦点为F,点M(1,3/2)在C上,且MF⊥x轴.(1)求C的方程;(2)过点P(4,0)的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y轴.

已知双曲线x²/4-y²=1,则过点(3,0)且和双曲线只有一个交点的直线的斜率为______.

已知椭圆C:x²/a² +y²/b² =1(a>b>0),焦点和短轴端点构成长为2的正方形,过(0,t)(t>√2)的直线l交椭圆于点A,B,已知点C(0,1),连接AC交椭圆于D.(1)求椭圆的方程和离心率;(2)若直线BD的斜率为0,求t.

已知双曲线Γ:x²-y²/b² =1(b>0),左右顶点分别为A1,A2,过点M(-2,0)的直线l交双曲线Γ于P,Q两点.(1)若离心率e=2,求b的值;(2)若b=2√6/3,△MA2P为等腰三角形,且点P在第一象限,求点P的坐标;(3)连接并延长OQ,交双曲线Γ于点R,若(A1R) ⋅(A2P) =1,求b的取值范围.

椭圆x2/a2 +y2/b2 =1上三点P,Q,R之离心角顺次为θ,ϕ,φ,试示P,Q,R处三切线所成三角形之面积(不计符号)为abtan (θ-ϕ)/2 tan (θ-φ)/2 tan (φ-θ)/2

设 P 为圆上之任意点,且 F 为一焦点,证明以 FP 及椭圆之长轴各为直径之圆必相内切.

设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.(1).求当 M 点沿圆线移动时 Q 点之轨迹.(2).讨论此轨迹之形状,并绘图以明之.