已知椭圆C:x²/a² +y²/b² =1(a>b>0),焦点和短轴端点构成长为2的正方形,过(0,t)(t>√2)的直线l交椭圆于点A,B,已知点C(0,1),连接AC交椭圆于D.
(1)求椭圆的方程和离心率;
(2)若直线BD的斜率为0,求t.
已知椭圆C:x²/a² +y²/b² =1(a>b>0),焦点和短轴端点构成长为2的正方形,过(0,t)(t>√2)的直线l交椭圆于点A,B,已知点C(0,1),连接AC交椭圆于D.
(1)求椭圆的方程和离心率;
(2)若直线BD的斜率为0,求t.
解答过程见word版
已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】
抛物线C:y²=4x的准线为l,P为C上的动点,过P作⨀A:x²+(y-4)²=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则【 】
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
已知双曲线的两个焦点分别为(0,4),(0,-4),点(-6,4)在该双曲线上,则该双曲线的离心率为【 】
若集合{(x,y)│y=x+t(x²-x),0≤t≤1,1≤x≤2}表示的图形中,两点间最大的距离为d,面积为S,则【 】
已知双曲线x²/4-y²=1,则过点(3,0)且和双曲线只有一个交点的直线的斜率为______.
设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.
椭圆x2/9+y2/4=1的焦点为F1,F2,点P为其上的动点.当∠F1PF2为钝角时,点P横坐标的取值范围是____________.
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.
求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。
已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。
已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.
已知椭圆x2/16+y2/4=1的左右焦点分别为F1与F2,点P在直线l:x-√3 y+8+2√3=0上.当∠F1 PF2取最大值时,比|PF1 |/(|PF2 |)的值为____________.
已知向量a,b满足|a|=1,|a+2b|=2,且(b-2a)⊥b,则|b|=【 】
记△ABC的内角A,B,C对应的边分别为a,b,c,已知sinA+√3 cosA=2.(1)求A.(2)若a=2,√2 bsinC=csin2B,求△ABC的周长.
记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b²=9/4 ac,则sinA+sinC=【 】
已知b是a,c的等差中项,直线ax+by+c=0与圆x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
已知直线ax+y+2-a与圆C:x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
求圆x²+y²-2x+6y=0的圆心到x-y+2=0的距离【 】
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinC sin(A-B)=sinBsin(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.