问答题(2024年天津市

已知四棱柱ABCD-A1 B1 C1 D1中,底面ABCD为梯形,AB∥CD,AA1⊥平面ABCD,AD⊥AB,其中AB=AA1=2,AD=DC=1,N是B1 C1的中点,M是DD1的中点.

(1)求证:D1 N∥平面CB1 M;

(2)求平面CB1 M与平面BB1 CC1的夹角的余弦值;

(3)求点B到平面CB1 M的距离.

答案解析

解答过程见word版

讨论

如图,已知A1B1C1-ABC是正三棱柱,D是AC的中点.(Ⅰ)证明AB1//平面DBC1;(Ⅱ)假设AB1⊥BC1,求以BC1为棱、DBC1与CBC1为面的二面角α的度数.

如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC,则BD1与AF1所成的角的余弦值是【 】

如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件____________时,有A1C⊥B1D1)(注:填上你认为正确的一-种条件即可,不必考虑所有可能的情形).

如图,已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(Ⅰ)求侧棱A1A与底面ABC所成角的大小;(Ⅱ)求侧面A1ABB1与底面ABC所成二面角的大小;(Ⅲ)求顶点C到侧面A1ABB1的距离.

如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为【 】

如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.

在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】

已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,DD为棱A1B1上的点, BF⊥A1B1. (1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?

一个正三棱柱形的零件,它的高是10cm,底面边长是2cm,求它的体积.

已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是【 】

如图,平面四边形ABCD中,AB=8,CD=3,AD=5√3,∠ADC=90°,∠BAD=30°,点E,F满足(AE)→=2/5 (AD)→,(AF)→=1/2 (AB)→.将△AEF沿EF翻折至△PEF,使得PC=4√3.(1)证明:EF⊥PD;(2)求面PCD与面PBF所成二面角的正弦值.

如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等边梯形,EF∥AD,BC∥AD,AD=4,AB=BC=EF=2,ED=√10,FB=2√3, M为AD的中点.(1)证明:BM∥平面CDE;(2)求二面角F-BM-E的正弦值.

如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等边梯形,EF∥AD,BC∥AD,AD=4,AB=BC=EF=2,ED=√10,FB=2√3, M为AD的中点.(1)证明:BM∥平面CDE;(2)求点M到ABF的距离.

已知四棱锥P-ABCD,AD∥BC,AB=BC=1,AD=3,DE=PE=2,E是AD上一点,PE⊥AD.(1)若F是PE的中点,证明:BF∥平面PCD.(2)若AB⊥PED,求平面PAB与平面PCD的夹角的余弦值.

设m,n为两条不同的直线,α为一个平面,则下列结论正确的是【 】

如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

如图,在正三角棱柱ABC-A1 B1 C1中,E∈BB1,截面A1 EC⊥侧面AC1 (Ⅰ)求证: BE=EB1;(Ⅱ)若AA1=A1 B1,求平面A1 EC与平面A1 B1 C1所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(Ⅰ)证明:(如图)在截面A1 EC内,过E作EG⊥A1 C,G是垂足. ①∵_________________________________________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC.②∵_________________________________________.∴BF⊥侧面AC1;得BF//EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________________________________________∴BF//EG四边形BEGF是平行四边形BF=EG.④∵_________________________________________∴FG//AA1,ΔAA1 C∽ΔFGC.⑤∵_________________________________________∴FG=1/2 AA1=1/2 BB1,即BE=1/2 BB1故BE=EB1.(Ⅱ)解:

如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a. (Ⅰ)求截面EAC的面积;(Ⅱ)求异面直线A1 B1与AC之间的距离;(Ⅲ)求三棱锥B1-EAC的体积.

如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为【 】

如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°. (Ⅰ)证明:C1C⊥BD.(Ⅱ)假设CD=2,CC1=3/2,记面C1BD为α,面CBD为β,求二面角a-BD-β的平面角的余弦值.(Ⅲ)当CD/CC1 的值为多少时,能使A1C⊥平面C1BD?请给出证明.