关注优题吧,注册平台账号.
已知虚数z,其实部为1,且z+2/z=m(m∈R),则实数m为______.
2
【解析】
解答过程见word版
某校举办科学竞技比赛,有A、B、C 3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题,小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是0.86,C题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.
已知抛物线y²=4x上有一点P到准线的距离为9,那么点P到x轴的距离为______.
在(x+1)n的二项展开式中,若各项系数和为32,则x²项的系数为________.
已知k∈R,a=(2,5),b=(6,k),且a∥b ,则k的值为________.
已知f(x)=x³+a,x∈R,且f(x)是奇函数,则a=______.
已知x∈R,则不等式x²-2x-3<0的解集为________.
已知f(x)=,则f(3)=______.
设全集U={1,2,3,4,5},集合A={2,4},则A ̅=________.
设集合M={(i,j,s,t)|i∈{1,2},j∈{3,4},s∈{5,6},t∈{7,8},2|(i+j+s+t)}.对于给定的有穷序列A:{a_n}(1≤n≤8),及序列Ω:ω1,ω2,⋯,ωs,ω_k=(i_k,j_k,s_k,t_k )∈M,定义变换T:将数列A的第i1,j1,s1,t1项加1,得到数列T1 (A);将数列T1 (A)的第i2,j2,s2,t2项加1,得到数列T2 T1 (A),⋯;重复上述操作,得到数列Ts⋯T2 T1 (A),记为Ω(A).(1)给定数列A:1,3,2,4,3,1,9和序列Ω:(1,3,5,7),(2,4,6,8),(1,3,5,7),写出Q(A);(2)是否存在序列Ω,使得Ω(A)为a1+2,a2+6,a3+4,a4+2,a5+8,a6+2,a7+4,a8+4,若存在,写出一个符合条件的Ω,若不存在,说明理由;(3)若数列A的各项均为正整数,且a1+a3+a5+a7为偶数,证明:“存在序列Ω,使得Ω(A)为常数列”的充要条件为“a1+a2=a3+a4=a5+a6=a7+a8”.
已知f(x)=x+kln(1+x)在(t,f(t))(t>0)处的切线为l.(1)若l的斜率为k=-1,求f(x)的单调区间;(2)证明:切线l不经过(0,0);(3)已知k=1,A(t,f(t)),C(0,f(t)),O(0,0),其中t>0,切线l与y轴交于点B,当2S△ACO=15S△ABO时,求符合条件的A的个数.(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)
设z=5+i,则i(z ̅+z)=【 】
设z=√2 i,则z∙z ̅=【 】
已知z/i=i-1,则z=【 】
全国统考复数的运算
设2(z+z ̅)+3(z - z ̅)=4+6i,则z=【 】
z1=1+i,z2=2+3i,则z1+z2=__________.
设i是虚数单位,复数(9+2i)/(2+i)=__________.
已知a∈R,(1+ai)i=3+i,(i为虚单位),则a=【 】
求(1-2i)5的实部.
(2+2i)(1-2i)=【 】
已知z=-1-i,则|z|=【 】
证明:任意正整数的平方均可表示为((a-b)²+(b-c)²+(c-a)²)/(2(ab+bc+ca))的形式,其中a,b,c为正整数.
设a正整数,fa (x)=x4+ax²+1.定义集合Pa={p|p为素数,且存在正整数k使得fa (2k)是p的倍数}(1)证明:对任意正整数a,Pa为无限集;(2)若Pa的任意两个元素之差是8的倍数,求正整数a的最小值.
设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.
给定正整数k(k≥2)与k个非零实数a1,a2,⋯,ak.证明:至多有有限个k元整数组(n1,n2,⋯,nk),满足n1,n2,⋯,nk互不相同,且a1∙n1 !+a2∙n2 !+⋯+ak∙nk !=0.
设整数n≥4.证明:若n整除2n-2,则(2n-2)/n是合数.
In the sequence 7,76,769,7692,76923,769230,… ,the nth term is given by the first n digits after the decimal point in the expansion of 10/13=0.7692307692⋯.Prove that of the first 60 terms of the sequence, at least 49 have three or more prime factors (repeated prime factors are allowed; for example, 76=2×2×19 has three prime factors).【译】在10/13=0.7692307692⋯的十进制表示中,由小数点后的前n位数构成数列:7,76,769,7692,76923,769230,… ,求证:在该数列的前60项中,至少有49项有三个或以上的素因子(包含重复的素因子,例如76=2×2×19有三个素因子).
Let m<n be positive integers. Start with n piles, each of m objects. Repeatedly carry out the following operation: choose two piles and remove n objects in total from the two piles. For which (m ,n) is it possible to empty all the piles?【译】设正整数m<n.起初一共有n 堆石子,每堆有 m块石子. 重复执行以下操作: 选择两堆石子,从这两堆中移除共n 块石子.问:对于怎样的 (m , n),可以移除所有石子?
Consider an odd prime p and a positive integer N<50p. Let a1,a2,⋯,aN be a list of positive integers less than p such that any specific value occurs at most 51/100 N times and a1,a2,⋯,aN is not divisible by p. Prove that there exists a permutation b1,b2,⋯,bN of the a_i such that, for all k=1,2,⋯,N, the sum b1+b2+⋯+bk is not divisible by p.【译】已知奇素数p和正整数N<50p.设a1,a2,⋯,aN是一些小于p的正整数,同一数值至多出现51/100 N次,且a1+a2+⋯+aN不能被p整除.证明:存在a_i的一个排列:b1,b2,⋯,bN,使得对任意的k=1,2,⋯,N,都有b1+b2+⋯+bk不能被p整除.
Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-negative) remainder that bn leaves upon division by an. Assume there exists a positive integer N such that rn<2n/n for all integers n≥N.Prove that a divides b.给定大于1的整数a和b.对任意的正整数n,记rn为bn除以an的非负余数.若存在正整数N,使得对任意的n≥N,都有rn<2n/n.证明:a整除b.