设u=u(x,y,z),v=v(x,y,z),w=w(x,y,z)由x=u+v+w,y=uv+uw+vw,z=uvw确定,求∂u/∂x,∂u/∂y,∂u/∂z.
设u=u(x,y,z),v=v(x,y,z),w=w(x,y,z)由x=u+v+w,y=uv+uw+vw,z=uvw确定,求∂u/∂x,∂u/∂y,∂u/∂z.
暂无答案
设函数f(x,y)=ext²dt,则∂²f/∂x∂y|(1,1)=______
设函数f(t)连续,令F(x,y)=(x-y-t) f(t)dt,则【 】
已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
已知二元函数f(x,y)=.(1)求fx(0,y);(2)证明:fxy(0,0)=-1.
用变换ξ=x,η=x2+y2化简方程y ∂z/∂x-x ∂z/∂y=0,并求出这个方程的通解z=z(x,y).
二元函数f(x,y)在点(x0,y0)处两个偏导数fx' (x0,y0 ),fy' (x0,y0)存在是f(x,y)在该点连续的【 】
设变换可把方程6 ∂2z/∂x2 +∂2z/∂x∂y-∂2z/∂x∂y=0化简为∂2z/∂u∂v=0,求常数a,其中z=z(x,y)有二阶连续的偏导数.
设函数f(x,y)在点(0,0)处可微,f(0,0)=0,n= (∂f/∂x,∂f/∂y,-1)|(0,0),非零向量r与n垂直,则【 】
已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是【 】
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
函数u=ln(x+)在A(1,0,1)处沿A点指向B(3,-2,2)点方向的方向导数为________.
已知((x+ay)dx+ydy)/(x+y)2 为某函数的全微分,则a等于【 】
设直线l:在平面π上,且平面π与曲面z=x2+y2相切于点(1,-2,5),求a,b的值.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程∂2z/∂x2+∂2z/∂y2=e2x z,求f(u).
设u=u(x,y),v=v(x,y)由方程所确定,求∂u/∂x,∂v/∂x.
设参数方程x=f'(t),y=tf'(t)-f(t),其中函数f(t)可以求导足够次数,求一阶导数dy/dx和二阶导数d2y/dx2.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dz/dx.
设x(y),z(y)是由方程组所确定的隐函数,求x'(y),z'(y).
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且∂φ/∂z≠0,求du/dx.