问答题(2022年东北大学

判断dx/(ex+1)的敛散性.

答案解析

1/(ex+1)=1/2,∴0不是瑕点.

x2∙1/(ex+1)=2x/ex =2/ex =0,且p=2>1

∴由柯西判别法知,dx/(ex+1)收敛.

讨论

求极限(x-xx)/(1-x+lnx)

设R3上的函数u具有二阶连续偏导数,且不恒为常数,并满足方程∆u+u5=0,∆=∂2/(∂x2 )+∂2/(∂y2 )+∂2/(∂z2 ).令uλ (x,y,z)=λα u(λx,λy,λz),α是某非零常数,使得对任意的λ>0,函数uλ都满足Δuλ+uλ5=0.(1)求常数α;(2)若积分|∇uλ (x,y,z)|2 dxdydz收敛,则对任意的λ>0,以下等式成立:|∇uλ (x,y,z)|2 dxdydz=|∇u(x,y,z)|2 dxdydz,这里∇=(∂/∂x,∂/∂y,∂/∂z);(3)假设D是R3中的一个有界光滑曲面∂D围成的区域,且 u|∂D=0,证明:∫D|u(x,y,z)|6 dxdydz=∫D|∇u(x,y,z)|2 dxdydz.

说明理由并证明:在什么条件下,方程F(x1,x2,⋯,xn )=0都能在x0∈Rn附近唯一确定可微函数xj=xj (x1,⋯,xj-1,xj+1,⋯,xn).并在x0附近,求(∂x1)/(∂x2 )(x)∙(∂x2)/(∂x3 )(x)⋯(∂xn-1)/(∂xn )(x)∙(∂xn)/(∂x1 )(x).

求曲面积分∬S(z3-x)dydz-xydzdx-3zdxdy.其中S是由曲面z=4-y2,平面x=0,平面x=3以及xOy平面围成立体的表面,取外侧.

求积分I(a)=arctan⁡(ax)/(x(1+x2)) dx,a>0.

设级数sinnx/(1+nx2)(1)当x取何值时,级数绝对收敛?并说明理由;(2)当x取何值时,级数条件收敛?并说明理由.

设f(x)=(1)求f(x)的傅里叶级数与傅里叶级数的和函数;(2)证明:1/n2 =π2/6.

设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.

设a,b,c,d皆为常数,cd≠0,说明并给出理由,当a,b,c,d满足什么条件时,f(x)=(ax+b)/(cx+d)无极值.

已知f(x)在(-1,1)上有任意阶导数,f(0)=0,且对任意的正整数n都有f(n)(0)=0.设存在C≥0,使得对任意的正整数n和x∈(-1,1),有|f(n)(x)|≤n!Cn.证明:f(x)在(-1,1)上恒为零.