先说明广义积分dx/(a4+x4 )收敛(a>0是常数),再计算其积分值.
先说明广义积分dx/(a4+x4 )收敛(a>0是常数),再计算其积分值.
∵f(x)=1/(a4+x4 )为偶函数,∴dx/(a4+x4 )=2dx/(a4+x4 )=2dx/(a4+x4 )+dx/(a4+x4 ),dx/(a4+x4 )为定积分,故收敛.对于dx/(a4+x4 ),因为1/(a4+x4 )≤1/x4 ≤1/x2 (x≥1),而dx/x2 收敛,故由比较原则知dx/(a4+x4 )收敛,∴广义积分dx/(a4+x4 )收敛.dx/(a4+x4 )=1/(2a2 ) (a2+x2+a2-x2)/(a4+x4 ) dx=1/(2a2 ) [(a2+x2)/(a4+x4 ) dx+(a2-x2)/(a4+x4 ) dx]=1/(2a2 ) [(a2/x2 +1)/(a4/x2 +x2 ) dx+(a2/x2 -1)/(a...
查看完整答案设f(x)是连续函数,且F(x)=f(t)dt,则F'(x)等于【 】
设函数f(x)在[0,1]上连续,在(0,1)内可导,且3f(x)dx=f(0),证明:在(0,1)内存在一点c,使f'(c)=0.
设M=sinx/(1+x2)cos4x dx,N=(sin3x+cos4x )dx,P=(x2sin3x-cos4x)dx,则有【 】
设f(x)=lnt/(1+t) dt,其中x>0,求f(x)+f(1/x).
设f(x)连续,则d/dx tf(x2-t2)dt等于【 】
设I1=x/2(1+cosx) dx,I2=ln(1+x)/(1+cosx) dx,I3=2x/(1+sinx) dx,则【 】