证明含参广义积分F(a)=e-axsinxdx在(0,+∞)连续,但非一致收敛.
设函数f(x)在[0,+∞)连续、非负,且广义积分f(x)dx收敛,证明:xf(x)dx=0.
设函数f(x)在开区间(a,b)内存在二阶导数f''(x),且在(a,b)内f''(x)>0,证明:对于任意两点x1,x2∈(a,b),恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2.
求由曲面(x2/a2 +y2/b2 +z2/c2 )2=x2/a2 +y2/b2 (a,b,c>0)所围成的空间区域的体积.
设φ(t),ψ(t)有二阶连续导数,u=φ(y/x)+xψ(y/x),求:x2 ∂2u/∂x2+2xy ∂2u)/∂x∂y+y2 ∂2u/∂y2.
判断函数列fn(x)=(x/n)ln(x/n)在区间(0,1)上的一致收敛性(说明理由).