关注优题吧,注册平台账号.
设p为常数,若反常积分lnx/(xp(1-x)1-p) dx收敛,则p的取值范围是【 】
A、 (-1,1)
B、(-1,2)
C、(-∞,1)
D、 (-∞,2)
A
设函数f(t)连续,令F(x,y)=(x-y-t) f(t)dt,则【 】
设函数f(x)在x=x0处有2阶导数,则【 】
理工数学Ⅱ微积分基本公式
当x→0时,α(x),β(x)是非零无穷小量,给出以下四个命题①若α(x)~β(x),则α2 (x)~β2 (x)②若α2 (x)~β2 (x),则α(x)~β(x)③若α(x)~β(x),则α(x)-β(x)=o(α(x))④若α(x)-β(x)=o(α(x)),则α(x)~β(x)其中所有真命题的序号是【 】
设X1,X2,…,Xn为来自均值为θ的指数分布总体的简单随机样本,Y1,Y2,…,Ym为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中θ(θ>0)是未知参数.利用样本X1,X2,…,Xn,Y1,Y2,…,Ym求θ的最大似然估计量θ ̂,并求D(θ ̂).
已知二次型f(x1,x2,x3 )=ijxixj.(1)求二次型矩阵.(2)求正交矩阵Q,使得二次型经正交变换x=Qy化为标准形.(3)求f(x1,x2,x3)=0的解.
设函数f(x)在(-∞,+∞)上有二阶连续导数,证明:f'' (x)≥0的充要条件是:对任意不同的实数a,b,f((a+b)/2)≤1/(b-a)f(x)dx.
已知Σ为曲面4x2+y2+z2=1,x≥0,y≥0,z≥0的上侧,L为Σ的边界曲线,其正向与Σ的正向法向量满足右手法则,计算曲线积分I=∫L(yz2-cosz)dx+2xz2dy+(2xyz+xsinz)dz.
已知平面区域D={(x,y)|y-2≤x≤,0≤y≤2},计算I=∬D(x-y)2/(x2+y2)dxdy.
设y=y(x)满足y'+1/(2√x) y=2+√x,y(1)=3,求y(x)的渐近线.
设函数f(x)在[0,+∞)连续、非负,且广义积分f(x)dx收敛,证明:xf(x)dx=0.
证明含参广义积分F(a)=e-axsinxdx在(0,+∞)连续,但非一致收敛.
证明:广义积分lnx/√x dx收敛.
已知f(x)dx条件收敛,且f+(x)=(|f(x)|+f(x))/2,f-(x)=(|f(x)|-f(x))/2证明:(1) f+(x)dx,f-(x)dx均发散到+∞;(2)当A→+∞时,f+(x) dx与f-(x)dx等价.
求积分I(a)=arctan(ax)/(x(1+x2)) dx,a>0.
判断dx/(ex+1)的敛散性.
设[a,+∞)上非负连续函数f可导,且具有连续导函数,若存在r>1,使xf'(x)/f(x)≤-r,证明:反常积分f(x)dx收敛.
讨论sinbx/xλ dx(b≠0)的绝对收敛性和条件收敛性.
先说明广义积分dx/(a4+x4 )收敛(a>0是常数),再计算其积分值.
求证:J=ln(sinx)dx收敛且J=-π/2 ln2.
设f(x)连续,φ(x)=f(xt)dt,且f(x)/x=A(A为常数),求φ'(x)并讨论φ'(x)在x=0处的连续性.
设I1=x/2(1+cosx) dx,I2=ln(1+x)/(1+cosx) dx,I3=2x/(1+sinx) dx,则【 】
lnx/√x dx=__________.
证明:sin(x²)dx>0.
证明:xasinxdx∙a-cosx dx≥π³/4其中,a>0为常数.
设f(a)=0,f(x)在[a,b]上的导数连续,求证:1/(b-a)²·|f(x)|dx≤1/2 maxx∈[a,b] |f'(x)|,x∈[a,b]
dx=__________.
当某公司推出一个新的社交软件时,公司的市场部门除了会关心该软件的活跃客的总人数随时间的变化,也会对客户群体的一些特征做具体的调研和分析。我们用n(t,x)表示客户的数量密度(以下简称密度),这里t表示时间,而x表示客户对该社交软件的使用时长,那么在t时刻,对于0<x1<x2,使用时长介于x1和x2之间的客户数量为n(t,x)dx。我们假设,密度n(t,x)随着时间演化受以下几个因素的影响:假设1.当客户持续使用该社交软件时,他的使用时长随时间线性增长。假设2.客户在使用过程中,可能会停止使用,我们假设停止速率d(x)>0只跟使用时长x有关。假设3.新客户的来源有两个。①公司的宣传:单位时间内因此增加的人数是时间的函数,用c(t)表示。②老客户的宣传:老客户会主动向自己的同事、朋友等推荐使用该社交软件,推荐成功的速率跟客户的使用时长x有关,记作b(x)。假设如果在某一时刻,记为t=0时,密度函数是已知的,n(0,x)=n0 (x)。可以推导出,n(t,x)的时间演化满足如下的方程 (1)这里N(t)可解读为新客户的增加速率。我们假设b,d∈(0,∞),即b(x)和d(x)正且(本质)有界。以下,我们先做一个简化假设:c(t)≡0,即新客户的增加只跟老客户的宣传有关。(i)问答题(10分)根据假设1和假设2,形式地推导出(1)中n(t,x)所满足的偏微分方程,需要在推导过程中指出模型假设和数学表达式之间的对应关系。再根据假设3,解释(1)中N(t)的定义的含义。(ii)问答题(10分)我们想要研究新客户的增加速率N(t)和推荐成功速率b(x)之间的关系。为此,请推导出一个N(t)所满足的方程,且方程中只包含N(t),n0 (x),b(x),d(x),而不包含n(t,x)。并证明,N(t)满足如下估计|N(t)|≤‖b‖∞|n0 (x)|dx,这里‖∙‖∞表示L∞范数。(iii)证明题(10分)最后,我们想要研究,在充分长的时间之后,数量密度函数n(t,x)有什么渐近的趋势。由于客户总人数可能一直在增加,所以我们不方便直接研究数量密度函数n(t,x),而更应该去看一个重整化的密度函数。为此,我们首先假设如下的特征值问题有唯一解(λ0,φ(x)):并且它的对偶问题也有唯一的解ψ(x):然后,我们定义重整化密度n ̃(t,x)≔n(t,x)e-λ0 t。证明,对于任意凸函数H:R+→R+满足H(0)=0,我们有d/dt ψ(x)φ(x)H()dx≤0,∀t≥0,并证明ψ(x)n(t,x))dx=eλ0t ψ(x) n0 (x)dx.
浙江省定积分的换元法
数值求积f(x)dx时(1)试写出直接用梯形公式的计算式T1;(2)将[a,b]n等分,用Tn表示用复化梯形公式求得的积分值,试写出Tn的计算式;(3)若将步长分半(即步长二分),试给出T2n与Tn的递推关系;(4)若用精度控制|T2n - Tn |<ε,试写出“变步长梯形法”的算法框图.