证明题(2024年中国数学奥林匹克

在△ABC中,I为内心,L,M,N分别为,AI,AC,CI的中点,D在线段AM上,满足BC=BD,△ABD的内切圆切边AD,BD于E,F,J为△AIC的外心,ω为△JMD的外接圆,MN再次交ω于P,JL再次交ω于Q,证明:PQ,LN,EF三线交于一点.

答案解析

解答过程见word版

讨论

在锐角三角形△ABC中,AB>AC,O为外心. 设D为BC上一点,O1,O2分别为△ABD,△ACD的外心,△AO1O2的外接圆与⨀O交于不同于A的点L.证明:A,O,D三点共线当且仅当AL//BC.

如图,在△ABC中,AB>AC,△ABC的内切圆I分别切边BC,CA,AB于点D,E,F.设M为DE的中点,N为DF的中点,直线EF与BC相交于点P,过点P作动直线l交内切圆I于不同的两点G,H,且I,M,G和I,N,H均不共线,△IMG的外接圆与△INH的外接圆交于不同于I的点Q,证明:点Q始终在一个定圆上.

Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.

如图所示,四边形ABCD内接于圆,(AB) ̅=5,(AC) ̅=3√5,(AD) ̅=7,∠BAC=∠CAD,则圆的半径为【 】

圆内各等弦中点之轨迹为一同心圆周,试证之.

任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.

If two circles tangent at C and a common exterior tangent touches the circles in A and B, the angle ACB is a right angle.

内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.

求内接于圆之 正六角形与外切正三角形之面积之比.

两圆相外切 (tangent externally) 于 A,又有一外公切线 (common external tangent) 切两圆于 B 及 C,试证 ∠BAC 为直角(right angle).

设P为平面凸多边形,若线段AB的两端点在P的边界上,并且过A,B与AB垂直的两条直线之间的区域(含边界)包含P,则称线段AB为“锦弦”. 求最大的正整数k,使得任意平面凸多边形P都有k条锦弦.

在n×n的方格表中,若两个方格有公共边,则称它们是相邻的.若l个互异方格A1,A2,⋯,A_l满足Ai和Ai+1相邻(1≤i≤l-1),则称它们为一条长度为l的“龙”.求最大正整数k,使得可以给每个方格填上0或者1,并且对任意一个方格A,和以A中数字为首项的0,1序列m1,m2,⋯,mk,都存在从A开始的长度为k的龙,方格中的数字依次是m1,m2,⋯,mk.

求最大的正整数n,使得平面上存在n个点P1,P2,⋯,Pn(任意三点不共线)和不过其中任意点的n条直线l1,l2,⋯,ln(任意三线不共点),满足对任意i≠j,直线Pi Pj,li,lj三线共点.

于四边形之内,取一点不在两对角线之交点之上者,试证明从此点至各顶点之距离之和大于两对角线之和.

PQRS为平面四边形,QR=1,∠PQR= ∠QRS= 70°,∠PQS=15°,∠PRS= 40°.若∠RPS=θ.PQ=α,PS=β,则4αβsinθ属于下列哪个区间【 】

试作一正方形,与一已知长方形之面积相等.

求作一四角形,与一已知四角形等角而外切于一定圆.

于三角形 ABC之BC边上任取X点作ABX及ACX两圆.(1)求证此两圆直径之比为AB:AC;(2)若BX:XC=m:n,试示①(m+n)cotAXC=ncotB-mcotC.②(m+n)2 AX2=(m+n)(mb2+nc2 )-mna2,其中a=BC,b=CA,c=AB.

证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.

设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.