单项选择(2024年天津市

一个五面体ABC-DEF,已知AD∥BE∥CF,且两两之间距离为1,并已知AD=1,BE=2,CF=3,则该五面体的体积为【 】

A、√3/6

B、3√3/4+1/2

C、√3/2

D、3√3/4-1/2

答案解析

C

【解析】

解答过程见word版

讨论

已知双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,P是双曲线右支上一点,且直线PF2的斜率为2,△PF1 F2是面积为8的直角三角形,则双曲线的方程为【 】

已知函数f(x)=sin3(ωx+π/3)(ω>0)的最小正周期为π,则f(x)在区间[-π/12,π/6]上的最小值是【 】

设m,n为两条不同的直线,α为一个平面,则下列结论正确的是【 】

若a=4.2-0.3,b=4.20.3,c=log4.2⁡0.2,则a,b,c的大小关系为【 】

下列函数是偶函数的为【 】

下列图中,相关性系数最大的是【 】

设a,b∈R,则“a³=b³”是“3a=3b”的【 】

集合A={1,2,3,4},B={2,3,4,5},则A∩B=【 】

对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)²+(f(x)-b)² ,若点P(x0 ,f(x0 ))是s(x)取到最小值的点,则称点P是M在f(x)的“最近点”.(1)对于f(x)=1/x(x>0),求证:对于点M(0,0),存在点P,使得P是M在f(x)的“最近点”;(2)对于f(x)=ex,M(1,0),请判断是否存在一个点P,它是M在f(x)的“最近点”,且直线MP与y=f(x)在P处的切线垂直;(3)已知y=f(x)在定义域R上存在导函数f'(x),函数g(x)在定义域R上恒正,设点M1 (t-1,f(t)-g(t)),M2 (t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是M1,M2在f(x)的“最近点”,试判断f(x)的单调性.

已知双曲线Γ:x²-y²/b² =1(b>0),左右顶点分别为A1,A2,过点M(-2,0)的直线l交双曲线Γ于P,Q两点.(1)若离心率e=2,求b的值;(2)若b=2√6/3,△MA2P为等腰三角形,且点P在第一象限,求点P的坐标;(3)连接并延长OQ,交双曲线Γ于点R,若(A1R) ⋅(A2P) =1,求b的取值范围.

以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,2√2,2√2,则该四棱锥的高为【 】

如图,正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD=3√2,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.

如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.(1)求三棱锥P-ABC的体积;(2)若M为BC中点,求PM与平面PAC所成角的大小.

P -ABC 为一正三角锥,其底面三角形 ABC 正三角形之每边为 10 尺,而APB、BPC、CPA 三个面角均为 30°,求此三角锥之高.

设一四面体有一三面角与另一四面体的一三面角对称,求证:其体积之比等于此两三面角三棱分别的乘积之比.

如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.

如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.

如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有【 】对。

如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。

设正六棱锥的底面边长为1,侧棱长为,那么它的体积为【 】

已知正三棱台ABC-A1B1C1的体积为52/3,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为【 】

已知圆台甲、乙的上底面半径均为r1,下底面半径均为r2,圆台的母线长分别为2(r2-r1 ),3(r2-r1),则圆台甲、乙的体积之比为______.

汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为 10 的等比数列,底面直径依次为 65mm,325mm,325mm,且斛量器的高为230mm,则斗量器的高为______mm,升量器的高为______mm.

如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.

某几何体的三视图如图所示,则该几何体的体积是【 】

如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】

如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.

由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.

底面半径为1cm的圆柱形容器里放有四个半径为1/2 cm的实心铁球,四个球两两相切,其中底层两个球与容器底面相切。现往容器里注水,使水面恰好浸没所有铁球,则需要注水________________cm3.

如图,四边形ABCD为正方形, ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V1,V2,V3,则【 】