计算定积分:(1+sin(3x))/(1+cos²x ) dx.
设{fn(x)}是区间[a,b]上一致收敛于f的可积函数列,证明:f在[a,b]上可积,且f(x)dx=fn(x) dx.
证明:(xlnx)ndx=(-1)nn!/(n+1)n+1 ,并利用此结论证明:x-x dx=1/nn .
设f(x)是[-1,1]上的连续函数,证明:εf(x)/(ε²+x²)dx=πf(0)
设f(x)在(0,+∞)上三次可导,且f(x)与f'''(x)均存在,证明:f' (x)=f'' (x)=f'''(x)=0
证明:2n/(2n+1)≤(1+1/n)n/e≤(2n+1)/(2n+2)(n≥1)