求含参积分I(y)=e-x²cos(2xy) dx.
计算Gauss曲面积分I=∬Scos((n,r) ̂)/r² dS,其中S为光滑封闭曲面,原点不在S上,r为S上动点至原点的距离,(n,r) ̂为动点处外法向量n与径向r的夹角.
设f(n)=a0+ak/nk ,且满足|a_k |≤M,这里n,k均为正整数,试证:数项级数f(n)收敛的充要条件为a0=a1=0.
设函数f(x)在I上有定义,令ωf(δ)=|f(x)-f(y)|证明:(1)ωf(δ)存在.(2) f(x)在区间I上一致连续等价于ωf(δ)=0.
设数列{xn}有界,且(xn+1-xn)=0,令 m=xn ,M=xn,m<M证明:在区间(m,M)上任意一个数都是此数列的一个子列的极限.
求极限:n[(1²+3²+⋯+(2n+1)²)/n³ -4/3]
设函数f在[0,1]上连续,定义g(t)=(tf(x))/(x²+t²) dx,t∈R证明:函数g在点0处连续当且仅当f(0)=0.
设函数f在R上可微,且满足对任意x∈R,有f(x+1)-f(x)=f'(x)以及f' (x)=1,证明:存在常数C,使得f(x)=x+C.