设数列{xn}有界,且(xn+1-xn)=0,令 m=xn ,M=xn,m<M
证明:在区间(m,M)上任意一个数都是此数列的一个子列的极限.
求极限:n[(1²+3²+⋯+(2n+1)²)/n³ -4/3]
设函数f在[0,1]上连续,定义g(t)=(tf(x))/(x²+t²) dx,t∈R证明:函数g在点0处连续当且仅当f(0)=0.
设函数f在R上可微,且满足对任意x∈R,有f(x+1)-f(x)=f'(x)以及f' (x)=1,证明:存在常数C,使得f(x)=x+C.
设函数f是(0,1]上无界的单调函数,且广义积分f(x) dx收敛,证明:1/n f((k-1)/n) =f(x)dx
设f是定义在[a,b]上的函数,且G={(x,f(x))|x∈[a,b]}是R2上的有界闭集,证明:f是[a,b]上的连续函数.
设函数f,g在[0,1]上连续,且存在包含于[0,1] 的数列{xn},使得对于任意n≥1,有f(xn)= g(xn+1).证明:存在ξ∈[0,1],使得 f(ξ)=g(ξ).
已知正项级数an 收敛,数列{xn}满足|xn+1-xn |≤a_n,∀n≥1.证明:{xn}收敛.
设数列{xn}满足xmn≤xm+xn,xn>0,证明:存在.
设{an},{bn},{cn}均为非负数列,且an=0, bn=1,cn=∞,则必有【 】
设数列{xn}为x1=1,xn+1= (n=1,2,…),求证数列{xn}收敛,并求其极限.
设数列{xn}为x1=,x2=,xn+2=(n=1,2,…),求证数列{xn}收敛,并求其极限.
对有界数列{xn},下面哪个说法可作为xn=L的定义【 】(此题不全,待更新)
设f(x)=sin(a1 x)+sin(a2 x)+sin(a3 x),a1,a2,a3>0.证明:存在数列{tn}使得tn=+∞且f(x+tn)=f(x)对∀x∈R一致成立.
(1/(ex-1)-1/ln(1+x) )=______.
设y=y(x)由方程y²-x+siny=0(x≥1)确定,且y=y(x)经过(π²,π).试讨论y(x)在(1,+∞)上零点的个数,并求y(x).
设f(x)在[a,b)上严格单调,xn∈(a,b),证明:如果f(xn)=f(a),则xn=a.
设f(x),g(x)在(-∞,+∞)上连续,且[f(x)-g(x)]=0.证明:f(x)在(-∞,+∞)上一致连续当且仅当g(x)在(-∞,+∞)上一致连续.
函数f(x)=|x|1/(1-x)(x-2)的第一类间断点的个数是【 】
若((1+ax²)sinx-1)/x³=6,则a=______.