问答题(2022年河北省

如图,四边形ABCD中,AD//BC,∠ABC=90°,∠C=30°,AD=3,AB=2√3,DH⊥BC于点H,将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4√3.

 

(1)求证:△PQM≅△CHD;

(2) △PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.

①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;

②如图2点K在BH上,且BK=9-4√3.若△PQM右移的速度为每秒1个单位长,绕点D旅转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;

③如图3在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).

答案解析

(1)∵AD//BC,DH⊥BC∴DH⊥AD则在四边形ABHD中,∠ABH=∠BHD=∠HDA=90°,故四边形ABHD为矩形,∴DH=AB=2√3,BH=AD=3.在Rt△DHC中,∠C=30°∴CD=2DH=4√3,CH=√3 DH=6.∵∠DHC=∠Q=90°,∠C=∠QPM=30°,CD=PM=4√3∴△PQM≅△CHD(AAS)(2)①过点Q作QS⊥AM于S由(1)得AQ=CH=6在Rt△AQS中,∠QAS=30°∴AS=√3/2 AQ=3√3.平移扫过的面积:S1=AD∙AS=3×3√3=9√3旋转扫过的面积:S2=(50°)/(360°)∙π∙PQ2=(50°)/(360°)∙π∙62=5π故边PQ扫过的面积:S=S1+S2=9√3+π.②运动分两个阶段:平移和旋转.平移阶段:KH=BH-BK=3-(9-4√3)=4√3-6∴t1=KH/v=(4√3-6)s旋转阶段:PM=2DM取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作GT⊥DM于T,设∠KDH=θ,则∠GHM=2θ在Rt△DKH中:KH=BH-BK=4√3-6=2√3(2-√3) DK===4√3× 设t= ,则KH=2√3 t2,DK=4√...

查看完整答案

讨论

如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是【 】

如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将ΔADF绕点A顺时针旋转90°得到ΔABG.若DF=3,则BE的长为__________.

如图的四个三角形中,不能由△ABC经过旋转或平移得到的是【 】

在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N. (1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.

如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在某个点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1)点C的坐标为(-3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1,并写出点A1的坐标;(2)将原来的R△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.

如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是【 】

将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),A(3,0),C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设OQ=t. (I)如图①,当t=1时,求∠O'QA的大小和点O'的坐标:(Ⅱ)如图②,若折叠后重合部分为四边形,O' Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示O'E的长,并直接写出t的取值范围:(Ⅲ)若折叠后重合部分的面积为3√3,则t的值可以是__________(请直接写出两个不同的值即可).

如图,将ΔABC先向右平移3个单位,再绕原点O旋转180°得到ΔA'B'C',则点A的对应点A'的坐标是【 】

如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s,同时,点Q从点A出发,沿AD方向匀速运动,速度为1m/s. PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm^2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ//CD?若存在,求出t的值;若不存在,请说明理由.

如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为【 】

如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是【 】

如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示 线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.

如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF【 】

如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把ΔADN绕点A顺时针旋转90°得到ΔABE. (1)求证:ΔAEM≌ΔANM.(2)若BM=3,DN=2,求正方形ABCD的边长.

已知:如图,E、F在AC上,AD//CB且AD=CB,∠D=∠B.求证:AE=CF.

如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.

如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.

如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.

如图,点E、F在线段BC上,AB//CD,∠A=∠D,BE=CF,证明:AE=DF.

在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC延长DC到点E,使得CE=DC. (1)如图(左),延长BC到点F,使得CF=BC,连接AF、EF,若AF⊥EF,求证:BD⊥AF.(2)连接AE,交BD的延长线干点H,连接CH,依题意补全图(右),若AB²=AE²+BD²,用等式表示线段CD与CH的数量关系,并证明.

如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为【 】

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】

如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

如图,小山岗的斜坡AC的坡度是tanα=3/4,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26:6°=0.45, cos26.6°=0.89, tan26.6°=0.50).

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

如图,在平面直角坐标系中,△AOB的边AO、AB的中点C、D的横坐标分别是1、4,则点B的横坐标是______.

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=(a+b+c)/2,则其面积S=.这个公式也被称为海伦-秦九韶公式.若p=5,c=4,则此三角形面积的最大值为【 】

如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为________.