关注优题吧,注册平台账号.
如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为【 】
A、8
B、11
C、16
D、17
B
不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是【 】
实数a,b在数轴上对应点的位置如图所示,下列判断正确的是【 】
计算-2/3 – (- 1/6)的结果为【 】
一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为【 】
-1/2的绝对值是【 】
如图,抛物线y=ax2-2x+c(a≠0)过点O(0,0)和A(6,0),点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标; (3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合,连接EF,将ΔBEF沿EF折叠,点B的对应点为点B,ΔEFB'与ΔOBE的重叠部分为ΔEFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.
如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合).作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数; (2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由; (3)当α=120°,tan∠ DAB=1/3时,请直接写出CE/BE的值.
如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.
超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?
如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)
已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA 的面积分别记为S0,S1,S2,S3.若S1+S2+S3=S0,则线段OP长的最小值是【 】
如图,已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC,则下列选项正确的是【 】
图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm. (1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.
如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】
如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.
【图形定义】有一条高线相等的两个三角形称为等高三角形,例如:如图①,在∆ABC和∆A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则∆ABC和∆A'B'C'是等高三角形。 【性质探究】如图①,用S∆ABC和S∆A'B'C'分别表示∆ABC和∆A'B'C'的面积,则S∆ABC=1/2 BC∙AD,S∆A' B' C'=1/2 B'C'∙A'D',∵AD=A'D'∴S∆ABC:S∆A'B'C'=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S∆ABD:S∆ADC=________;(2)如图③,在ΔABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S∆ABC=1,则S∆BEC=______, S∆DEC=________.(3)如图③,在ΔABC中,D,E分别是BC和AB边上的点. 若BE:AB=1:m,CD:BC=1:n,S∆ABC=a,则S∆DEC=________.
如图,将△ABC折叠,使AC边落在△AB边上,展开后得到折痕l,则l是ABC的【 】
如图,在ΔABC中,D是BC边上一点,且BD=BA. (1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.
以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(1)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到,组数据如下表:(单位:厘米)(2)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析;①设BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点;②连线;观察思考(3)结合表中的数据以及所面的图像,猜想.当x=__________时,y最大;(4)进一步C猜想:若Rt△MBC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC= _________时,AC+BC最大.推理证明(5)对(4)中的猜想进行证明.问题1.在图①中完善(2)的描点过程,并依次连线;问题2.补全观察思考中的两个猜想:(3) _______ (4) _______问题3.证明上述(5)中的猜想:问题4.图②中折线B-E-F-G-A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米,∠E=∠F=∠G=90°,平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区城,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.
如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到ΔEF1B;点F2是CF_1的中点,连接EF2,BF2,得到ΔEF2 B;点F3是CF2的中点,连接EF3,BF3,得到ΔEF3 B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则ΔEFn B的面积为_________.(用含正整数n的式子表示)
如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G. (1) 当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2) 当CG=2时,求AE的长;(3) 当点E从点A向右运动到点B时,求点G运动路径的长度.
如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是__________(写出一个即可)。
《淮南子·天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B、A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C、B两点间的距离为10步,在点C处立一根杆,取 CA的中点D,那么直线DB表示的方向为东西方向。(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示。使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在图中,确定了直线DB表示的方向为东西方向,根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=______,D是CA的中点,∴CA⊥DB(__________)(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.
已知关于x的一元二次方程x2-4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.
如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=4/5,求BF和AD的长.
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.
如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于________.
已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.
如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是【 】
如图,O为正方形ABCD对角线AC的中点,ΔACE为等边三角形.若AB=2,则OE的长度为【 】