问答题(2021年北京市

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.

(1)求证:∠BAD=∠CAD;

(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.

答案解析

(1) ∵AD是⨀O的直径,且AD⊥BC,∴(BD) ̂=(CD) ̂.∴∠BAD=∠CAD.(2)在Rt△BOE中,OB=5,OE=3,BE=4.∵AD是⨀O的直径,且AD⊥BC,∴BC=2BE=8...

查看完整答案

讨论

如图,AB为⨀O的弦,D,C为弧ACB的三等分点,AC//BE. (1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.

一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若ACB=60°,则劣弧AB的长是【 】

如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB,AD于点F,G,DF与AE交于点H.并与⨀A交于点K,连接HG,HC.给出下列四个结论,其中正确的有________(填写所有正确结论的序号)(1) H是FK的中点; (2) △HGD≅△HEC;(3) S△AHG:S△DHC=9:16; (4) DK=7/5

如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=________.

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE 重合时,连接CO交半圆于点F,连接并延长DF交CE于点G,求证:CF²=CG·CE.

如图,线段AB是⨀O的直径,弦CD⊥AB于点H,点M是(CBD) ̂上任意一点,AH=2,CH=4.(1)求⨀O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE⋅HF的值.

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】

如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.

如图,每个小正方形边长均为1,则图中的三角形(阴影部分)与下图中△ABC相似的是【 】

如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为【 】

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30°,同一时刻,根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】

如图, RT△ABC中∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为________.

如图,在平面直角坐标系中,△AOB的边AO、AB的中点C、D的横坐标分别是1、4,则点B的横坐标是______.

如图,为了测量河对岸两点AB之间的距离,在河岸这边取点CD测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17',∠BDC=56°19',设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17'≈0.35,tan56°19'≈1.50.)

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

在△ABC中,∠ABC=90°,若AC=100,sinA=3/5,则AB的长是【 】

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】

如图1,在四边形ABCD中,AD// BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AE上一点,AD=1,BC=2.求tan⁡∠ APE的值.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD. (1)求证:AD=CD;(2)若AB=4,BF=5,求sin⁡∠ BDC的值.

如图,在⊙O中,点A在弧BC上,∠BOC=100°,则∠BAC=__________.

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B. (1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:△DCF是等腰三角形.

如图,在Rt ΔABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1/2 AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为_________.

如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE. (1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.

如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.

一把直尺、60°的直角板和光盘如图摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是【 】