如图,为了测量河对岸两点AB之间的距离,在河岸这边取点CD测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17',∠BDC=56°19',设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17'≈0.35,tan56°19'≈1.50.)
如图,为了测量河对岸两点AB之间的距离,在河岸这边取点CD测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17',∠BDC=56°19',设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17'≈0.35,tan56°19'≈1.50.)
如图,作BE⊥CD于E,作BF⊥CA交CA延长线于F. ∵∠FCD=90°∴四边形CEBF是矩形,∵BE⊥CD,∠BCD=45°,∴∠BCE=∠CBE=45°,∴CE=BE,∴矩形CEBF是正方形.设CE=BE=xm,在Rt△BDE中,DE=BE/(tan∠BDE)=x/(tan56°19')≈2/3 xm.∵CD...
查看完整答案如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=2,DE=1,则S△ACD=________.
已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA 的面积分别记为S0,S1,S2,S3.若S1+S2+S3=S0,则线段OP长的最小值是【 】
如图,已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC,则下列选项正确的是【 】
在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD,BE相交于点F,且AF=4,EF=√2,则AC=________.
泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的【 】
如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F.求证:∠DEF=∠F.
如图,在平行四边形ABCD中,将△AB' C沿着AC所在的直线翻折得到△AB' C,B'C交AD于点E,连接B'D.若∠B=60°,∠ACB=45°,AC=.则B'D的长是【 】
如图,在Rt△ABC中,∠C=90°.AF=EF.若∠CFE=72°.则∠B=______°.
如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=15°,过点D作DF⊥CM,垂足为F若DF=,则对角线BD的长为________(结果保留根号)
如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于________.
如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】