单项选择(2020年贵州省贵阳市

如图,RtΔABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于1/2 DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为【 】

A、无法确定

B、1/2

C、1

D、2

答案解析

C

讨论

如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB. (1)若AE=1,求△ABD的周长;(2)若AD=1/3 BD,求tan∠ABC的值.

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB'C',使点C'落在AB边上,连结BB',则sin∠BB'C'的值为【 】

如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直一部分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为________.

如图,数字代表所在正方形的面积,则A所代表的正方形的面积为________.

如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于1/2 MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为 __________.

用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:Rt△ABC,∠B=90°.求作:点P使点P在△ABC内部,且PB=PC,∠PBC=45°.

随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度,某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处的俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长.(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).

问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由.问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.

无人机在实际生活中应用广泛。如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B C、D P在同一平面内)。(1)填空:∠APD=____度,∠ADC=____度; (2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.

在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=________.

如图,小山岗的斜坡AC的坡度是tanα=3/4,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26:6°=0.45, cos26.6°=0.89, tan26.6°=0.50).

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=(a+b+c)/2,则其面积S=.这个公式也被称为海伦-秦九韶公式.若p=5,c=4,则此三角形面积的最大值为【 】

【图形定义】有一条高线相等的两个三角形称为等高三角形,例如:如图①,在∆ABC和∆A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则∆ABC和∆A'B'C'是等高三角形。 【性质探究】如图①,用S∆ABC和S∆A'B'C'分别表示∆ABC和∆A'B'C'的面积,则S∆ABC=1/2 BC∙AD,S∆A' B' C'=1/2 B'C'∙A'D',∵AD=A'D'∴S∆ABC:S∆A'B'C'=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S∆ABD:S∆ADC=________;(2)如图③,在ΔABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S∆ABC=1,则S∆BEC=______, S∆DEC=________.(3)如图③,在ΔABC中,D,E分别是BC和AB边上的点. 若BE:AB=1:m,CD:BC=1:n,S∆ABC=a,则S∆DEC=________.

如图,将△ABC折叠,使AC边落在△AB边上,展开后得到折痕l,则l是ABC的【 】

如图,在ΔABC中,D是BC边上一点,且BD=BA. (1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.

如图,在ΔABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F,求证:ΔABC是等腰三角形.

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】

如图,射线OM、ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线0N上,则点A′到射线ON的距离d=________.

如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.图①图②(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙 - h甲 = h,已知h(米)关于注水时间t(小时)的函数图像如图③所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.图③

如图,点O在直线AB上OC⊥OD.若∠AOC=120°,则∠BOD的大小为【 】.

如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是【 】

在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).① ②(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.③ ④①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.

为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,DE是正五边形的五个顶点),则图中∠A的度数是度______°.

下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.

下列图形是正方体展开图的个数为【 】

如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是【 】

如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为【 】