填空题(2011年广东省深圳市

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

答案解析

1/3

讨论

如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m. (1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据: tan76°取4,√17取4.1)

如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆心,大于1/2 MN的长为半径画弧,两弧在∠ABC 的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠A的度数是【 】

如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=2,DE=1,则S△ACD=________.

下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明。三角形内角和定理:三角形三个内角和等于180°,已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一 证明:如图,过点A作DE//BC. 方法二证明:如图,过点C作CD//AB.

已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA 的面积分别记为S0,S1,S2,S3.若S1+S2+S3=S0,则线段OP长的最小值是【 】

如图,已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC,则下列选项正确的是【 】

图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm. (1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin⁡28°≈0.47,cos⁡28°≈0.88,tan⁡28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.

如图,在ΔABC中,D是BC边上一点,且BD=BA. (1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.

如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到ΔEF1B;点F2是CF_1的中点,连接EF2,BF2,得到ΔEF2 B;点F3是CF2的中点,连接EF3,BF3,得到ΔEF3 B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则ΔEFn B的面积为_________.(用含正整数n的式子表示)

如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为【 】

如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.

各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+1/2b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=_______.

欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:__________.

正八边形的每个内角为【 】

如图1(左),将一个正六边形各边延长,构成一个正六角星形 AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形 A1F1B1D1C1E1,如图2(中)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2D2C2E2,如图3(右)中阴影部分,如此下去…,则正六角星形 A4F4B4D4C4E4的面积为________.

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是【 】

如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是【 】

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是【 】

如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】

已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是【 】

如图,平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD其中C(c,0).当c=2时,会从c处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系:2当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.

如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是【 】

在平面直角坐标系中,点P(- 20,a) 与点Q(b,13) 关于原点对称,则a+b的值为【 】

如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_________.