单项选择(2022年安徽省

已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA 的面积分别记为S0,S1,S2,S3.若S1+S2+S3=S0,则线段OP长的最小值是【 】

A、3√3/2

B、5√3/2

C、3√3

D、7√3/2

答案解析

B如图,S2=S△PDB+S△PDB,S2=S△PDB+S△ADC,∴S1+S2+S_3=S1+(S△PDB+S△PDB)+(S△PDB+S△ADC)=S1+(S△PDB+S△PDB)+(S△PDB+S△ADC) =S1+S△PAB+S△ABC =2S1+S0=2S0 ∴S1=1/2S0 设△ABC中AB上的高为h1,△PAB中AB上的高为h2,则S0=1/2AB⋅h1=3h1,S1=1/2AB⋅h2=3h2,∴h...

查看完整答案

讨论

在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图像可能是【 】

随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“ ”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为【 】

已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则 OP=【 】

两个矩形的位置如图所示,若∠1=α,则∠2=【 】

甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是【 】

下列各式中,计算结果等于的a9是【 】

一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是【 】

据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为【 】

下列为负数的是【 】

在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(-2,0),点Q为点P的“对应点”. ①在图中画出点Q;②连接PQ.交线段ON于点T.求证:NT=1/2 OM.(2) ⨀O的半径为1,M是⨀O上一点,点N在线段OM上,且ON=t(1/2<t<1),若P为⨀O外一点,点Q为点P的“对应点”,连接PQ.当点M在⨀O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示).

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

如图,在△ABC中,点D、E分别是BC、AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.

我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=(a+b+c)/2,则其面积S=.这个公式也被称为海伦-秦九韶公式.若p=5,c=4,则此三角形面积的最大值为【 】

如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为________.

如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1) 尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2) 在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.

如图,己知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合。下列结论正确的有:________(填写序号).①BD=8 ②点E到AC的距离为3 ③EM=10/3 ④EM//AC

【图形定义】有一条高线相等的两个三角形称为等高三角形,例如:如图①,在∆ABC和∆A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则∆ABC和∆A'B'C'是等高三角形。 【性质探究】如图①,用S∆ABC和S∆A'B'C'分别表示∆ABC和∆A'B'C'的面积,则S∆ABC=1/2 BC∙AD,S∆A' B' C'=1/2 B'C'∙A'D',∵AD=A'D'∴S∆ABC:S∆A'B'C'=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S∆ABD:S∆ADC=________;(2)如图③,在ΔABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S∆ABC=1,则S∆BEC=______, S∆DEC=________.(3)如图③,在ΔABC中,D,E分别是BC和AB边上的点. 若BE:AB=1:m,CD:BC=1:n,S∆ABC=a,则S∆DEC=________.

如图,将△ABC折叠,使AC边落在△AB边上,展开后得到折痕l,则l是ABC的【 】

如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为a,β,则正确的是【 】

题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2;乙答:d=1.6;丙答:d=√2,则正确的是【 】

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为【 】

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.

如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径 作(EF) ̂,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为__________.

①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择【 】

某款“不倒翁”(左图)的主视图(右图)中,PA,PB分别与(AMB) ̂所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则(AMB) ̂的长是【 】

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图,△ABC内接于⨀O,AD是⨀O的直径,若∠B=20°,则∠CAD的度数是【 】

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】