单项选择(2022年河北省

某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是【 】

A、

B、

C、

D、

答案解析

C

【解析】

依题意,mn=12,符合反比例函数.

讨论

在平面直角坐标系xOy中,矩形OABC的点A在函数y=1/x(x>0)的图像上,点C在函数y=-4/x(x<0)的图像上,若点B的横坐标为-7/2,则点A的坐标为【 】

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】

如图,一次函数y=kx+b的图像与x轴正半轴相交于点C,与反比例函数y=-2/x的图像在第二象限相交于点A(-1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.

如图,点A是反比例函数y=3/x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为_______.

如图,一次函数y=x+1的图象与反比例函数y=k/x的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k/x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k/x的图象没有公共点.

如图,在ΔABC中,AB=AC,点A在反比例函数y=k/x(k>0,x>0)的图象上,点B,C在x轴上,OC=1/5 OB,延长AC交y轴于点D,连接BD,若ΔBCD的面积等于1,则k的值为_________.

如图,在平面直角坐标系中,一次函数y=1/2x+5和y=﹣2x的图像相交于点A,反比例函数y=k/x的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=1/2x+5的图像与反比例函数y=k/x的图像的另一个交点为B,OB,求△ABO的面积.

如图,一次函数y=kx-1的图象与反比例函数y=m/x的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.

已知反比例函数解析式y=k/x的图象经过(1,-2),则k=________.

如图,直线y=2x-6与反比例函数y=k/x(x>0)的图像交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标; (2)在ⅹ轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为【 】

在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1) 若m=3,n=15,求该抛物线的对称轴;(2) 已知点(-1,y1 ),(2,y2 ),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.

在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.

tan45°的值等于【 】

如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

已知二次函数y=ax2+bx+c的图像开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是【 】

已知二次函数y=x2+mx+m2-3(m为常数,m>0)的图像经过点P(2,4).(1)求m的值:(2)判断二次函数y=x2+mx+m2-3的图像与x轴交点的个数,并说明理由.

李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?

如图,抛物线y=ax²+bx+2经过点A(-1,0),B(4,0),交y轴于点C.(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=2/3 S△ABD?若存在请直接给出点D的坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

抛物线y=x2-1交x轴于A,B两点(A在B的左边),(1) ▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是5,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_________.

如图,在平面直角坐标系中,ΔOAB的顶点A,B的坐标分别为(3,),(4,0).把ΔOAB沿x轴向右平移得到ΔCDE,如果点D的坐标为(6,),则点E的坐标为_________.

在半面直角坐标系中,点(3,2)关于x轴对称的点的坐标为【 】