问答题(2022年天津市

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.

(I)若b=-2,c=-3,

①求点P的坐标;

②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;

(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

答案解析

(I)①∵抛物线y=ax2+bx+c与x轴相交于点A(-1,0),∴a-b+c=0.又b=-2,c=-3,得a=1.∴抛物线的解析式为y=x2-2x-3.∵y=x2-2x-3=(x-1)2-4,∴点P的坐标为(1,-4).②当y=0时,由x2-2x-3=0解得x_1=-1,x_2=3,∴点B的坐标为(3,0).设经过B,P两点的直线的解析式为y=kx+n,则,解得,∴直线BP的解析式为y=2x-6.∵直线x=m(m是常数,1<m<3)与抛物线y=x2-2x-3相交于点M,与BP相交于点G,∴点M的坐标为(m,m2-2m-3),点G的坐标为(m,2m-6),∴MG=(2m-6)-(m2-2m-3)=-m2+4m-3=-(m-2)2+1,∴当m=2时,MG有最大值1.此时,点M,G的坐标分别为(2,-3),(2,-2).(Ⅱ)由(I)知a+b+c=0,又3b=2c,∴b=-2a,c=-3a.(...

查看完整答案

讨论

将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),A(3,0),C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设OQ=t. (I)如图①,当t=1时,求∠O'QA的大小和点O'的坐标:(Ⅱ)如图②,若折叠后重合部分为四边形,O' Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示O'E的长,并直接写出t的取值范围:(Ⅲ)若折叠后重合部分的面积为3√3,则t的值可以是__________(请直接写出两个不同的值即可).

在“看图说故事”活动中,某学习小组结合图像设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓,给出的图像反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(I)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km 0.5 ___ ___ 1.6 ___(Ⅱ)填空:①阅览室到超市的距离为________km;②小琪从超市返回学生公寓的速度为________km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为________min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.

如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.

已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.

在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图② 请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m的值为________;(Ⅱ)求统计的这组项数数据的平均数、众数和中位数.

解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得____________;(Ⅱ)解不等式②,得____________;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式的解集为________________.

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于________.

若一次函数y=x+b(b是常数)的图像经过第一、二、三象限,则b的值可以是______(写出一个即可).

不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其它差别.从袋子中随机取出1个球,则它是绿球的概率是________.

二次函数y=x2-2x+6的最小值是________.

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?

已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1 ),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).

如图(左),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等.设x=AD,y=AE+CD,y关于x的函数图像如图(右),图像过点(0,2),则图像最低点的横坐标是________.

已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是【 】

如图,二次两数y=x2-(m+1)x+m(m是实数,且-1<m<0)的图像与x轴交于A,B两点(点A在点B的左侧),其对称轴与x轴交于C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF. (1)求A,B,C三点的坐标(用数字或含m的式子表示);(2)已知点Q在拋物线的对称轴上,当△AFQ的周长的最小值等于12/5时,求m的值.

已知二次函数y=ax2+bx+c的图像经过(-2,1),(2-3)两点.(1)求b的值.(2)当c>-1时,该函数的图像的顶点的纵坐标的最小值是__________.(3)设(m,0)是该函数的图像与x轴的一个公共点,当-1<m<3时,结合函数的图像,直接写出a的取值范围.

已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1 (x1,y1 ),P2 (x2,y2)是抛物线上不同于A,B的两个点,记△P1 AB的面积为S1,△P2 AB的面积为S2.有以下结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的个数是【 】

已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当b/a的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则b/a的值是______.

已知抛物线y=-2x2+bx+c经过点(0,-2),当x<-4时,y随x的增大而增大,当x>-4时,y随x的增大而减小.设r是抛物线y=-2x2+bx+c与x轴的交点(也称公共点)的横坐标,m=(r9+r7-2r5+r3+r-1)/(r9+60r5-1).(1)求b,c的值;(2)求证:r4-2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你的结论.

已知点A(a,y1),B(a+1,y2)在反比例函数y=(m2+1)/x (m是常数)的图像上,且y1<y2则a的取值范围是________.

如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sinB的值是______.

设O为坐标原点,点A,B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A,B,过O作OC⊥AB于点C,则点C到y轴距离的最大值【 】

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

计算|1-tan60°|的值为【 】

在平面直角坐标系xOy中,矩形OABC的点A在函数y=1/x(x>0)的图像上,点C在函数y=-4/x(x<0)的图像上,若点B的横坐标为-7/2,则点A的坐标为【 】

如图,在平面直角坐标系xOy中,直线l:y=1/2 x+4分别与x轴,y轴相交于A,B两点,点P(x,y)为直线l在第二象限的点.(1) 求A,B两点的坐标;(2) 设△PAO的面积为S,求S关于x的解析式,并写出x的取值范围;(3) 作△PAO的外接圆⨀C,延长PC交⨀C于点Q,当△POQ的面积最小时,求⨀C的半径.

如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是【 】

tan45°的值等于【 】

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】