单项选择(2022年天津市

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】

A、x1<x2<x3

B、x2<x3<x1

C、x1<x3<x2

D、x2<x1<x3

答案解析

B

【解析】

将三点坐标分别代入函数解析式y=8/x,得:x1=4,x2=-8,x3=2,

∴x2<x3<x1.

讨论

如图,在平面直角坐标系中,一次函数y=1/2x+5和y=﹣2x的图像相交于点A,反比例函数y=k/x的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=1/2x+5的图像与反比例函数y=k/x的图像的另一个交点为B,OB,求△ABO的面积.

如图,一次函数y=kx-1的图象与反比例函数y=m/x的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.

已知反比例函数解析式y=k/x的图象经过(1,-2),则k=________.

如图,直线y=2x-6与反比例函数y=k/x(x>0)的图像交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标; (2)在ⅹ轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

已知点A(a,y1),B(a+1,y2)在反比例函数y=(m2+1)/x (m是常数)的图像上,且y1<y2则a的取值范围是________.

如图,在平面直角坐标系中,四边形OABCOABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=-3x+k的图像经过点C,D,反比例函数y=k/x(x>0)的图像经过点B,求k的值.

如图,正比例函数y=kx与函数y=6/x的图像交于A,B两点,BC//x轴,AC//y轴,则S△ABC=________.

若反比例函数的图象经过点(1,-2),则该反比例函数的解析式(解析式也称表达式)为_________.

如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为________.

在平面直角坐标系xOy中,矩形OABC的点A在函数y=1/x(x>0)的图像上,点C在函数y=-4/x(x<0)的图像上,若点B的横坐标为-7/2,则点A的坐标为【 】

若a+b=3,a2+b2=7,则ab=_______.

已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=_______.

如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.

已知抛物线 y=x2-(m+1)x+2m+3.(1) 当m=0时,请判断点(2,4)是否在该抛物线上;(2) 该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3) 已知点E(-1,-1),F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

已知抛物线y=1/2 x2+x+c与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.

如图,抛物线y=1/2 x2-3/2 x-9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行于BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

对抛物线:y=-x2+2x-3而言,下列结论正确的是【 】